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Second, this is a technical treatise, and various interpreters will not agree on
the technical translation of certain critical terms. For example, near the end
of Book I, Chapter 10, the cosmological climax of the book, Copernicus
uses a word derived from the Greek, symmetria. Professor Rosen has trans-
lated it simply as “symmetry,” whereas others would look to the Greek root
and make it “commensurability.” In Book III, Chapter 20, where Copernicus
treats the technical details of his models, he distinguishes between epicyclus
and epicyclius. Professor Rosen carefully maintains this difference between
“epicycle” and “epicyclet,” whereas others have blurred this nuance. Finally,
the word orbis appears in the title and throughout the early part of the book;
Copernicus sometimes uses it in the sense of “sphere” and at other times in
the sense of “circle.” Which translation should be used has generated in-
tense and sometimes acrimonious controversy.

Third, the printed book itself is not free from errors and inconsistencies. It
seems that Copernicus proofread the printed sheets as they were sent back
to Poland, and those errors he found were included in a printed errata sheet
issued by the printer in Nuremberg. By the time the printing was com-
pleted, not all of the sheets had been corrected by Copernicus, but a hand
list of later errors was provided, presumably by Copernicu himself, and used
by an inner circle of scholars in Nuremberg and Wittenberg — errors that of
course remained uncorrected in the great majority of copies. Other astute
readers, such as Erasmus Reinhold, the astronomy professor in Wittenberg,
caught still other errors, such as 182 in place of 183 on page 171v (6 lines from
the bottom) of the printed book. Errors such as these have been corrected
in the present translation, and explaining discrepancies between the printed
Latin edition and the English translation. Other discrepancies are more
subtle. For example, it seems that Copernicus’ disciple Rheticus reworked
some of the tables to bring them in line with the numbers that Copernicus
had in the text as a result of revisions he made after his earlier calculation of
the tables. The Polish scholars who created the Latin text that Professor
Rosen used for his translation believed that such changes were not the original
work of Copernicus — they suppressed the changes even though a more
perceptive examination shows that in such cases the printed text is actually
to be preferred.

To the original publisher’s title page blurb, Eme, lege, fruere (“Buy, read, en-
joy!”), might well be added, Caveat lector!




Nicolaus Copernicus

of Torun

Six Books on

the Revolutions of the Heavenly Spheres

Diligent reader, in this work, which has just been created and
published, you have the motions of the fixed stars and planets,
as these motions have been reconstituted on the basis of ancient
as well as recent observations, and have moreover been embel-
lished by new and marvelous hypotheses. You also have most
convenient tables, from which you will be able to compute those
motions with the utmost ease for any time whatever. Therefore

buy, read, and enjoy.
Let no one untrained in geometry enter here.
Nuremberg

Johannes Petreius

1543

To the Reader

Concerning the Hypotheses of this Work.

There have already been widespread reports about the novel hypotheses of this
work, which declares that the earth moves whereas the sun is at rest in the
center of the universe. Hence certain scholars, I have no doubt, are deeply of-
tfended and believe that the liberal arts, which were established long ago on a
sound basis, should not be thrown into confusion. But if these men are willing
to examine the matter closely, they will find that the author of this work has
done nothing blameworthy. For it is the duty of an astronomer to compose the
history of the celestial motions through careful and expert study. Then he must
conceive and devise the causes of these motions or hypotheses about them.
Since he cannot in any way attain to the true causes, he will adopt whatever
suppositions enable the motions to be computed correctly from the principles
of geometry for the future as well as for the past. The present author has per-
tormed both these duties excellently. For these hypotheses need not be true nor
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even probable. On the contrary, if they provide a calculus consistent with the
observations, that alone is enough. Perhaps there is someone who is so igno-
rant of geometry and optics that he regards the epicycle of Venus as probable,
or thinks that it is the reason why Venus sometimes precedes and sometimes
follows the sun by forty degrees and even more. Is there anyone who is not
aware that from this assumption it necessarily follows that the diameter of the
planet at perigee should appear more than four times, and the body of the
planet more than sixteen times, as great as at apogee? Yet this variation is re-
tuted by the experience of every age. In this science there are some other no less
important absurdities, which need not be set forth at the moment. For this art,
it is quite clear, is completely and absolutely ignorant of the causes of the ap-
parent nonuniform motions. And if any causes are devised by the imagination,
as indeed very many are, they are not put forward to convince anyone that they
are true, but merely to provide a reliable basis for computation. However, since
different hypotheses are sometimes offered for one and the same motion (for
example, eccentricity and an epicycle for the sun’s motion), the astronomer will
take as his first choice that hypothesis which is the easiest to grasp. The phi-
losopher will perhaps rather seek the semblance of the truth.

But neither of them will understand or state anything certain, unless it has
been divinely revealed to him.

Therefore alongside the ancient hypotheses, which are no more probable,
let us permit these new hypotheses also to become known, especially since they
are admirable as well as simple and bring with them a huge treasure of very
skillful observations. So far as hypotheses are concerned, let no one expect any-
thing certain from astronomy, which cannot furnish it, lest he accept as the
truth ideas conceived for another purpose, and depart from this study a greater

fool than when he entered it. Farewell.

Nicholas Schonberg, Cardinal of Capua,

to Nicholas Copernicus, Greetings.

Some years ago word reached me concerning your proficiency, of which every-
body constantly spoke. At that time I began to have a very high regard for you,
and also to congratulate our contemporaries among whom you enjoyed such
great prestige. For I had learned that you had not merely mastered the discov-
eries of the ancient astronomers uncommonly well but had also formulated a

new cosmology. In it you maintain that the earth moves; that the sun occupies
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the lowest, and thus the central, place in the universe; that the eighth heaven
remains perpetually motionless and fixed; and that, together with the elements
included in its sphere, the moon, situated between the heavens of Mars and
Venus, revolves around the sun in the period of a year. I have also learned that
you have written an exposition of this whole system of astronomy, and have
computed the planetary motions and set them down in tables, to the greatest
admiration of all. Therefore with the utmost earnestness I entreat you, most
learned sir, unless I inconvenience you, to communicate this discovery of yours
to scholars, and at the earliest possible moment to send me your writings on
the sphere of the universe together with the tables and whatever else you have
that is relevant to this subject. Moreover, I have instructed Theodoric of Reden
to have everything copied in your quarters at my expense and dispatched to me.
If you gratify my desire in this matter, you will see that you are dealing with a
man who is zealous for your reputation and eager to do justice to so fine a

talent. Farewell.

Rome, 1 November 1536

To His Holiness, Pope Paul III,

Nicolaus Copernicus’ preface

to his Books on the Revolutions.

I can readily imagine, Holy Father, that as soon as some people hear that in this
volume, which I have written about the revolutions of the spheres of the uni-
verse, I ascribe certain motions to the terrestrial globe, they will shout that I
must be immediately repudiated together with this belief. For I am not so
enamored of my own opinions that I disregard what others may think of them.
I am aware that a philosopher’s ideas are not subject to the judgment of ordi-
nary persons, because it is his endeavor to seek the truth in all things, to the
extent permitted to human reason by God. Yet I hold that completely errone-
ous views should be shunned. Those who know that the consensus of many
centuries has sanctioned the conception that the earth remains at rest in the
middle of the heaven as its center would, I reflected, regard it as an insane
pronouncement if I made the opposite assertion that the earth moves. There-
tore I debated with myself for a long time whether to publish the volume which
I wrote to prove the earth’s motion or rather to follow the example of the
Pythagoreans and certain others, who used to transmit philosophy’s secrets

only to kinsmen and friends, not in writing but by word of mouth, as is shown
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by Lysis’ letter to Hipparchus. And they did so, it seems to me, not, as some
suppose, because they were in some way jealous about their teachings, which
would be spread around; on the contrary, they wanted the very beautiful thoughts
attained by great men of deep devotion not to be ridiculed by those who are
reluctant to exert themselves vigorously in any literary pursuit unless it is lucra-
tive; or if they are stimulated to the non-acquisitive study of philosophy by the

exhortation and example of others, yet because

of their dullness of mind they play the same part among philosophers as drones
among bees. When I weighed these considerations, the scorn which I had rea-
son to fear on account of the novelty and unconventionality of my opinion
almost induced me to abandon completely the work which I had undertaken.

But while I hesitated for a long time and even resisted, my friends drew me
back. Foremost among them was the cardinal of Capua, Nicolaus Schonberg,
renowned in every field of learning. Next to him was a man who loves me
dearly, Tiedemann Giese, bishop of Chelmno, a close student of sacred letters
as well as of all good literature. For he repeatedly encouraged me and, some-
times adding reproaches, urgently requested me to publish this volume and
finally permit it to appear after being buried among my papers and lying con-
cealed not merely until the ninth year but by now the fourth period of nine
years. The same conduct was recommended to me by not a few other very
eminent scholars. They exhorted me no longer to refuse, on account of the fear
which I felt, to make my work available for the general use of students of as-
tronomy. The crazier my doctrine of the earth’s motion now appeared to most
people, the argument ran, so much the more admiration and thanks would it
gain after they saw the publication of my writings dispel the fog of absurdity by
most luminous proofs. Influenced therefore by these persuasive men and by
this hope, in the end I allowed my friends to bring out an edition of the volume,
as they had long besought me to do.

However, Your Holiness will perhaps not be greatly surprised that I have
dared to publish my studies after devoting so much effort to working them out
that I did not hesitate to put down my thoughts about the earth’s motion in
written form too. But you are rather waiting to hear from me how it occurred to
me to venture to conceive any motion of the earth, against the traditional opin-
ion of astronomers and almost against common sense. I have accordingly no
desire to conceal from Your Holiness that I was impelled to consider a different

system of deducing the motions of the universe’s spheres for no other reason
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than the realization that astronomers do not agree among themselves in their
investigations of this subject. For, in the first place, they are so uncertain about

the motion of the sun and moon

that they cannot establish and observe a constant length even for the tropical
year. Secondly, in determining the motions not only of these bodies but also of
the other five planets, they do not use the same principles, assumptions, and
explanations of the apparent revolutions and motions. For while some employ
only homocentrics, others utilize eccentrics and epicycles, and yet they do not
quite reach their goal. For although those who put their faith in homocentrics
showed that some nonuniform motions could be compounded in this way, nev-
ertheless by this means they were unable to obtain any incontrovertible result in
absolute agreement with the phenomena. On the other hand, those who devised
the eccentrics seem thereby in large measure to have solved the problem of the
apparent motions with appropriate calculations. But meanwhile they introduced
a good many ideas which apparently contradict the first principles of uniform
motion. Nor could they elicit or deduce from the eccentrics the principal consid-
eration, that is, the structure of the universe and the true symmetry of its parts.
On the contrary, their experience was just like some one taking from various
places hands, feet, a head, and other pieces, very well depicted, it may be, but not
for the representation of a single person; since these fragments would not belong
to one another at all, a monster rather than a man would be put together from
them. Hence in the process of demonstration or “method,” as it is called, those
who employed eccentrics are found either to have omitted something essential or
to have admitted something extraneous and wholly irrelevant. This would not
have happened to them, had they followed sound principles. For if the hypoth-
eses assumed by them were not false, everything which follows from their hy-
potheses would be confirmed beyond any doubt. Even though what I am now
saying may be obscure, it will nevertheless become clearer in the proper place.
For a long time, then, I reflected on this confusion in the astronomical
traditions concerning the derivation of the motions of the universe’s spheres. I
began to be annoyed that the movements of the world machine, created for our
sake by the best and most systematic Artisan of all, were not understood with
greater certainty by the philosophers, who otherwise examined so precisely the
most insignificant trifles of this world. For this reason I undertook the task of
rereading the works of all the philosophers which I could obtain to learn whether

anyone had ever proposed other
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motions of the universe’s spheres than those expounded by the teachers of as-
tronomy in the schools. And in fact first I found in Cicero that Hicetas sup-
posed the earth to move. Later I also discovered in Plutarch that certain others
were of this opinion. I have decided to set his words down here, so that they
may be available to everybody:Some think that the earth remains at rest. But
Philolaus the Pythagorean believes that, like the sun and moon, it revolves
around the fire in an oblique circle. Heraclides of Pontus and Ecphantus the
Pythagorean make the earth move, not in a progressive motion, but like a wheel
in a rotation from west to east about its own center.

Therefore, having obtained the opportunity from these sources, I too began
to consider the mobility of the earth. And even though the idea seemed absurd,
nevertheless I knew that others before me had been granted the freedom to
imagine any circles whatever for the purpose of explaining the heavenly phe-
nomena. Hence I thought that I too would be readily permitted to ascertain
whether explanations sounder than those of my predecessors could be found
tor the revolution of the celestial spheres on the assumption of some motion of
the earth.

Having thus assumed the motions which I ascribe to the earth later on in
the volume, by long and intense study I finally found that if the motions of the
other planets are correlated with the orbiting of the earth, and are computed
for the revolution of each planet, not only do their phenomena follow therefrom
but also the order and size of all the planets and spheres, and heaven itself is so
linked together that in no portion of it can anything be shifted without dis-
rupting the remaining parts and the universe as a whole. Accordingly in the
arrangement of the volume too I have adopted the following order. In the first
book I set forth the entire distribution of the spheres together with the motions
which I attribute to the earth, so that this book contains, as it were, the general
structure of the universe. Then in the remaining books I correlate the motions
of the other planets and of all the spheres with the movement of the earth so
that I may thereby determine to what extent the motions and appearances of
the other planets and spheres can be saved if they are correlated with the earth’s
motions. I have no doubt that acute and learned astronomers will agree with

me if, as this
discipline especially requires, they are willing to examine and consider, not super-
ficially but thoroughly, what I adduce in this volume in proof of these matters.

However, in order that the educated and uneducated alike may see that I do not

8 Nicolaus Copernicus. De Revolutionibus Orbium Ceelestium, Libri VI. Nuremberg, 1543. THE WARNOCK LIBRARY

preface 4

preface 5




run away from the judgment of anybody at all, I have preferred dedicating my
studies to Your Holiness rather than to anyone else. For even in this very remote
corner of the earth where I live you are considered the highest authority by virtue
of the loftiness of your office and your love for all literature and astronomy too.
Hence by your prestige and judgment you can easily suppress calumnious attacks
although, as the proverb has it, there is no remedy for a backbite.

Perhaps there will be babblers who claim to be judges of astronomy al-
though completely ignorant of the subject and, badly distorting some passage
of Scripture to their purpose, will dare to find fault with my undertaking and
censure it. I disregard them even to the extent of despising their criticism as
unfounded. For it is not unknown that Lactantius, otherwise an illustrious writer
but hardly an astronomer, speaks quite childishly about the earth’s shape, when
he mocks those who declared that the earth has the form of a globe. Hence
scholars need not be surprised if any such persons will likewise ridicule me.
Astronomy is written for astronomers. To them my work too will seem, unless
I am mistaken, to make some contribution also to the Church, at the head of
which Your Holiness now stands. For not so long ago under Leo X the Lateran
Council considered the problem of reforming the ecclesiastical calendar. The
issue remained undecided then only because the lengths of the year and month
and the motions of the sun and moon were regarded as not yet adequately
measured. From that time on, at the suggestion of that most distinguished
man, Paul, bishop of Fossombrone, who was then in charge of this matter, I
have directed my attention to a more precise study of these topics. But what I
have accomplished in this regard, I leave to the judgment of Your Holiness in
particular and of all other learned astronomers. And lest I appear to Your Ho-
liness to promise more about the usefulness of this volume than I can fulfill, I

now turn to the work itself.

Index of topics contained in each chapter of the six books of Nicolaus

Copernicus’ Revolutions of the Heavenly Spheres.

Book One
1. The universe is spherical.
2. The earth too is spherical.
3. How earth forms a single sphere with water.
4. The motion of the heavenly bodies is uniform, eternal, and circular or

compounded of circular motions.
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8.

9.
I0.
II.
I2.
13.
4.

. Does circular motion suit the earth? What is its position?

. The immensity of the heavens compared to the size of the earth.

Why the ancients thought that the earth remained at rest in the middle of
the universe as its center.

The inadequacy of the previous arguments and a refutation of them.
Can several motions be attributed to the earth? The center of the universe.
The order of the heavenly spheres.

Proof of the earth’s triple motion.

Straight lines subtended in a circle.

The sides and angles of plane rectilinear triangles.

Spherical triangles.

Book Two

I.

2.

IO.

II.

I2.

The circles and their names.
The obliquity of the ecliptic, the distance between the tropics, and the

method of determining these quantities.

. The arcs and angles of the intersections of the equator, ecliptic, and me-

ridian; the derivation of the declination and right ascension from these
arcs and angles, and the computation of them.

For every heavenly body situated outside the ecliptic, provided that the
body’s latitude and longitude are known, the method of determining its
declination, its right ascension, and the degree of the ecliptic with which

it reaches mid-heaven.

. The intersections of the horizon.

. The differences in noon shadows.

How to derive from one another the longest day, the distance between
sunrises, and the inclination of the sphere; the remaining differences be-

tween days.

. The hours and parts of the day and night.

. The oblique ascension of the degrees of the ecliptic; how to determine

what degree is at mid-heaven when any degree is rising.

The angle at which the ecliptic intersects the horizon.

The use of these tables.

The angles and arcs of those circles which are drawn through the poles of

the horizon to the ecliptic.
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13. The rising and setting of the heavenly bodies.

14. The investigation of the places of the stars, and the arrangement of the
fixed stars in a catalogue.
Book Three

1. The precession of the equinoxes and solstices.

2. History of the observations proving that the precession of the equinoxes

and solstices is not uniform.

3. Hypotheses by which the shift in the equinoxes as well as in the obliquity

of the ecliptic and equator may be demonstrated.

4. How an oscillating motion or motion in libration is constructed out of

circular [motions].

5. Proof of the nonuniformity in the precession of the equinoxes and in the

obliquity.

6. The uniform motions of the precession of the equinoxes and of the incli-

nation of the ecliptic.

7. What is the greatest difference between the uniform and the apparent

precession of the equinoxes?

8. The individual differences between these motions, and a table exhibiting

those differences.

9. Review and correction of the discussion of the precession of the equinoxes.
10. What is the greatest variation in the intersections of the equator and ecliptic?
11. Determining the epochs of the uniform motions of the equinoxes and

anomaly.
12. Computing the precession of the vernal equinox and the obliquity.
13. The length and nonuniformity of the solar year.
14. The uniform and mean motions in the revolutions of the earth’s center.
15. Preliminary theorems for proving the nonuniformity of the sun’s apparent
motion.

16. The sun’s apparent nonuniformity.

17. Explanation of the first and annual solar inequality, together with its par-
ticular variations.

18. Analysis of the uniform motion in longitude.

19. Establishing the positions and epochs for the sun’s uniform motion.

20. The second and twofold inequality imposed on the sun by the shift of the
apsides.

21. How large is the second variation in the solar inequality?
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22.
23.
24.

25.
26.

How the solar apogee’s uniform and nonuniform motions are derived.
Determining the solar anomaly and establishing its positions.

Tabular presentation of the variations in the uniform and apparent [solar
motions].

Computing the apparent sun.

The nuchthemeron, that is, the variable natural day.

Book Four

I.

»

A

10.
II.
12.
13.
4.
15.
16.
17.

18.

19.

20.

The hypotheses concerning the lunar circles, according to the belief of the
ancients.

The defect in those assumptions.

A different opinion about the moon’s motion.

The moon’s revolutions, and the details of its motions.

Exposition of the first lunar inequality, which occurs at new and full moon.

Verification of the statements about the moon’s uniform motions in lon-
gitude and anomaly.

The epochs of the lunar longitude and anomaly.

The moon’s second inequality, and the ratio of the first epicycle to the second.
The remaining variation, in which the moon is seen moving nonuniformly
away from the [first] epicycle’s higher apse.

How the moon’s apparent motion is derived from the given uniform motions.
Tabular presentation of the lunar prosthaphaereses or normalizations.
Computing the moon’s motion.

How the moon’s motion in latitude is analyzed and demonstrated.

The places of the moon’s anomaly in latitude.

The construction of the parallactic instrument.

How the lunar parallaxes are obtained.

A demonstration of the moon’s distances from the earth, and of their ratio
in units of which the earth’s radius equals one.

The diameter of the moon and of the earth’s shadow at the place where
the moon passes through it.

How to demonstrate at the same time the distances of the sun and moon
from the earth, their diameters, the diameter of the shadow where the
moon passes through it, and the axis of the shadow.

The size of these three heavenly bodies, sun, moon, and earth, and a com-

parison of their sizes.
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21. The apparent diameter and parallaxes of the sun.
22. The moon’s varying apparent diameter and its parallaxes.
23. To what extent does the earth’s shadow vary?
24. Tabular presentation of the individual solar and lunar parallaxes in the
circle which passes through the poles of the horizon.
25. Computing the solar and lunar parallax.
26. How the parallaxes in longitude and latitude are separated from each other.
27. Confirmation of the assertions about the lunar parallaxes.
28. The mean conjunctions and oppositions of the sun and moon.
29. Investigating the true conjunctions and oppositions of the sun and moon.
30. How conjunctions and oppositions of the sun and moon at which eclipses
occur may be distinguished from others.
31. The size of a solar and lunar eclipse.
32. Predicting how long an eclipse will last.
Book Five
1. The revolutions and mean motions [of the planets].
2. The planets’ uniform and apparent motion, as explained by the theory of
the ancients.
3. General explanation of the apparent nonuniformity caused by the earth’s
motion.
4. In what ways do the planets’ own motions appear nonuniform?
5. Derivations of Saturn’s motion.
6. Three other more recently observed oppositions of Saturn.
7. Analysis of Saturn’s motion.
8. Determining Saturn’s places.
9. Saturn’s parallaxes arising from the earth’s annual revolution, and Saturn’s
distance [from the earth].
10. Expositions of Jupiter’s motion.
1. Three other more recently observed oppositions of Jupiter.
12. Confirmation of Jupiter’s uniform motion.
13. Determining the places of Jupiter’s motion.
14. Determining Jupiter’s parallaxes, and its height in relation to the earth’s
orbital revolution.
15. The planet Mars.
16. Three other recently observed oppositions of the planet Mars.

Nicolaus Copernicus. De Revolutionibus Orbium Ceelestium, Libri VI. Nuremberg, 1543. THE WARNOCK LIBRARY




17.
18.
19.
20.
2I.
22.
23.
24.
25.
26.
27.
28.

29.
30.
31
32.
33-
34.
35-
36.

Confirmation of Mars’ motion.

Determining Mars’ places.

The size of Mars’ orbit in units whereof the earth’s annual orbit is one unit.
The planet Venus.

The ratio of the earth’s and Venus’ orbital diameters.

Venus’ twofold motion.

Analyzing Venus’ motion.

The places of Venus’ anomaly.

Mercury.

The place of Mercury’s higher and lower apsides.

The size of Mercury’s eccentricity, and the ratio of its circles.

Why Mercury’s elongations at about the side of a hexagon look bigger
than the elongations occurring at perigee.

Analysis of Mercury’s mean motion.

More recent observations of Mercury’s motions.

Determining Mercury’s places.

An alternative account of approach and withdrawal.

Tables of the prosthaphaereses of the five planets.

How to compute the longitudinal places of these five planets.

The stations and retrogradations of the five planets.

How the times, places, and arcs of retrogression are determined.

Book Six

I.

»

S W

~

General explanation of the five planets’ deviation in latitude.

The theory of the circles by which these planets are moved in latitude.
How much are the orbits of Saturn, Jupiter, and Mars inclined?

General explanation of any other latitudes of these three planets.

The latitudes of Venus and Mercury.

Venus’ and Mercury’s second latitudinal digression, depending on the in-
clination of their orbits at apogee and perigee.

The size of the obliquation angles of both planets, Venus and Mercury.
The third kind of latitude, which is called the “deviation,” in Venus and
Mercury.

Computing the latitudes of the five planets.
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Nicolaus Copernicus

Revolutions
Book One

The universe is spherical. Chapter 1.

First of all, we must note that the universe is spherical. The reason is either
that, of all forms, the sphere is the most perfect, needing no joint and being a
complete whole, which can be neither increased nor diminished; or that it is
the most capacious of figures, best suited to enclose and retain all things; or
even that all the separate parts of the universe, I mean the sun, moon, planets
and stars, are seen to be of this shape; or that wholes strive to be circumscribed
by this boundary, as is apparent in drops of water and other fluid bodies when
they seek to be self-contained. Hence no one will question the attribution of

this form to the divine bodies.

The earth too is spherical. Chapter 2.

The earth also is spherical, since it presses upon its center from every direction.
Yet it is not immediately recognized as a perfect sphere on account of the great
height of the mountains and depth of the valleys. They scarcely alter the gen-
eral sphericity of the earth, however, as is clear from the following considera-
tions. For a traveler going from any place toward the north, that pole of the
daily rotation gradually climbs higher, while the opposite pole drops down an
equal amount. More stars in the north are seen not to set, while in the south
certain stars are no longer seen to rise. Thus Italy does not see Canopus, which
is visible in Egypt; and Italy does see the River’s last star, which is unfamiliar to
our area in the colder region. Such stars, conversely, move higher in the heavens
for a traveler heading southward, while those which are high in our sky sink
down. Meanwhile, moreover, the elevations of the poles have the same ratio

everywhere to the portions of the earth that

have been traversed. This happens on no other figure than the sphere. Hence
the earth too is evidently enclosed between poles and is therefore spherical.
Furthermore, evening eclipses of the sun and moon are not seen by easterners,
nor morning eclipses by westerners, while those occurring in between are seen

later by easterners but earlier by westerners.
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The waters press down into the same figure also, as sailors are aware, since
land which is not seen from a ship is visible from the top of its mast. On the
other hand, if a light is attached to the top of the mast, as the ship draws away
from land, those who remain ashore see the light drop down gradually until it
finally disappears, as though setting. Water, furthermore, being fluid by nature,
manifestly always seeks the same lower levels as earth and pushes up from the
shore no higher than its rise permits. Hence whatever land emerges out of the

ocean is admittedly that much higher.

How earth forms a single sphere with water. Chapter 3.

Pouring forth its seas everywhere, then, the ocean envelops the earth and fills
its deeper chasms. Both tend toward the same center because of their heavi-
ness. Accordingly there had to be less water than land, to avoid having the
water engulf the entire earth and to have the water recede from some portions
of the land and from the many islands lying here and there, for the preservation
of living creatures. For what are the inhabited countries and the mainland itself
but an island larger than the others?

We should not heed certain peripatetics who declared that the entire body
of water is ten times greater than all the land. For, according to the conjecture
which they accepted, in the transmutation of the elements as one unit of earth
dissolves, it becomes ten units of water. They also assert that the earth bulges
out to some extent as it does because it is not of equal weight everywhere on
account of its cavities, its center of gravity being different from its center of
magnitude. But they err through ignorance of the art of geometry. For they do
not realize that the water cannot be even seven times greater and still leave any
part of the land dry, unless earth as a whole vacated the center of gravity and
yielded that position to water, as if the latter were heavier than itself. For, spheres
are to each other as the cubes of their diameters. Therefore, if earth were the

eighth part to seven parts of water,

earth’s diameter could not be greater than the distance from [their joint] center
to the circumference of the waters. So far are they from being as much as ten
times greater [than the land].

Moreover, there is no difference between the earth’s centers of gravity and
magnitude. This can be established by the fact that from the ocean inward the
curvature of the land does not mount steadily in a continuous rise. If it did, it

would keep the sea water out completely and in no way permit the inland seas
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and such vast gulfs to intrude. Furthermore, the depth of the abyss would never
stop increasing from the shore of the ocean outward, so that no island or reef or
any form of land would be encountered by sailors on the longer voyages. But it
is well known that almost in the middle of the inhabited lands barely fifteen
turlongs remain between the eastern Mediterranean and the Red Sea. On the
other hand, in his Geggraphy Ptolemy extended the habitable area halfway around
the world. Beyond that meridian, where he left unknown land, the moderns
have added Cathay and territory as vast as sixty degrees of longitude, so that
now the earth is inhabited over a greater stretch of longitude than is left for the
ocean. To these regions, moreover, should be added the islands discovered in
our time under the rulers of Spain and Portugal, and especially America, named
after the ship’s captain who found it. On account of its still undisclosed size it
is thought to be a second group of inhabited countries. There are also many
other islands, heretofore unknown. So little reason have we to marvel at the
existence of antipodes or antichthones. Indeed, geometrical reasoning about
the location of America compels us to believe that it is diametrically opposite
the Ganges district of India.

From all these facts, finally, I think it is clear that land and water together
press upon a single center of gravity; that the earth has no other center of
magnitude; that, since earth is heavier, its gaps are filled with water; and that
consequently there is little water in comparison with land, even though more
water perhaps appears on the surface.

The earth together with its surrounding waters must in fact have such a
shape as its shadow reveals, for it eclipses the moon with the arc or a perfect
circle. Therefore the earth is not flat, as Empedocles and Anaximenes thought;
nor drum-shaped, as Leucippus; nor bowl-shaped, as Heraclitus; nor hollow in
another way, as Democritus; nor again cylindrical, as Anaximander; nor does
its lower side extend infinitely downward, the thickness diminishing toward

the bottom, as Xenophanes taught; but it is perfectly round, as the philoso-
phers hold.

The motion of the heavenly bodies is uniform, eternal, and circular or
compounded of circular motions. Chapter 4.

I shall now recall to mind that the motion of the heavenly bodies is circular,
since the motion appropriate to a sphere is rotation in a circle. By this very act
the sphere expresses its form as the simplest body, wherein neither beginning

nor end can be found, nor can the one be distinguished from the other, while
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the sphere itself traverses the same points to return upon itself.

In connection with the numerous [celestial] spheres, however, there are
many motions. The most conspicuous of all is the daily rotation, which the
Greeks call nuchthemeron, that is, the interval of a day and a night. The entire
universe, with the exception of the earth, is conceived as whirling from east to
west in this rotation. It is recognized as the common measure of all motions,
since we even compute time itself chiefly by the number of days.

Secondly, we see other revolutions as advancing in the opposite direction,
that is, from west to east; I refer to those of the sun, moon, and five planets. The
sun thus regulates the year for us, and the moon the month, which are also very
familiar periods of time. In like manner each of the other five planets com-
pletes its own orbit.

Yet [these motions] differ in many ways [from the daily rotation or first
motion]. In the first place, they do not swing around the same poles as the first
motion, but run obliquely through the zodiac. Secondly, these bodies are not
seen moving uniformly in their orbits, since the sun and moon are observed to
be sometimes slow, at other times faster in their course. Moreover, we see the
other five planets also retrograde at times, and stationary at either end [of the
regression]. And whereas the sun always advances along its own direct path,
they wander in various ways, straying sometimes to the south and sometimes to
the north; that is why they are called “planets” [wanderers]. Furthermore, they
are at times nearer to the earth, when they are said to be in perigee; at other
times they are farther away, when they are said to be in apogee.

We must acknowledge, nevertheless, that their motions are circular or com-
pounded of several circles, because these nonuniformities recur regularly ac-
cording to a constant law. This could not happen unless the motions were cir-
cular, since only the circle can bring back the past. Thus, for example, by a
composite motion of circles the sun restores to us the inequality of days and

nights as well as the four seasons of the year.

Several motions are discerned herein, because a simple heavenly body cannot
be moved by a single sphere nonuniformly. For this nonuniformity would have
to be caused either by an inconstancy, whether imposed from without or gener-
ated from within, in the moving force or by an alteration in the revolving body.
From either alternative, however, the intellect shrinks. It is improper to con-
ceive any such defect in objects constituted in the best order. It stands to rea-

son, therefore, that their uniform motions appear nonuniform to us. The cause
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may be either that their circles have poles different [from the earth’s] or that
the earth is not at the center of the circles on which they revolve. To us who
watch the course of these planets from the earth, it happens that our eye does
not keep the same distance from every part of their orbits, but on account of
their varying distances these bodies seem larger when nearer than when farther
away (as has been proved in optics). Likewise, in equal arcs of their orbits their
motions will appear unequal in equal times on account of the observer’s varying
distance. Hence I deem it above all necessary that we should carefully scruti-
nize the relation of the earth to the heavens lest, in our desire to examine the
loftiest objects, we remain ignorant of things nearest to us, and by the same

error attribute to the celestial bodies what belongs to the earth.

Does circular motion suit the earth? What is its position?  Chapter 3.

Now that the earth too has been shown to have the form of a sphere, we must
in my opinion see whether also in this case the form entails the motion, and
what place in the universe is occupied by the earth. Without the answers to
these questions it is impossible to find the correct explanation of what is seen in
the heavens. To be sure, there is general agreement among the authorities that
the earth is at rest in the middle of the universe. They hold the contrary view to
be inconceivable or downright silly. Nevertheless, if we examine the matter
more carefully, we shall see that this problem has not yet been solved, and is
therefore by no means to be disregarded.

Every observed change of place is caused by a motion of either the ob-
served object or the observer or, of course, by an unequal displacement of each.
For when things move with equal speed in the same direction, the motion is
not perceived, as between the observed object and the observer, I mean. Itis the
earth, however, from which the celestial ballet is beheld in its repeated per-

formances before our eyes. Therefore, if any motion is ascribed to the earth,

in all things outside it the same motion will appear, but in the opposite direction,
as though they were moving past it. Such in particular is the daily rotation, since
it seems to involve the entire universe except the earth and what is around it.
However, if you grant that the heavens have no part in this motion but that the
earth rotates from west to east, upon earnest consideration you will find that this
is the actual situation concerning the apparent rising and setting of the sun, moon,
stars and planets. Moreover since the heavens, which enclose and provide the

setting for everything, constitute the space common to all things, it is not at first
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blush clear why motion should not be attributed rather to the enclosed than to
the enclosing, to the thing located in space rather than to the framework of space.
This opinion was indeed maintained by Heraclides and Ecphantus, the
Pythagoreans, and by Hicetas of Syracuse, according to Cicero. They rotated the
earth in the middle of the universe, for they ascribed the setting of the stars to the
earth’s interposition, and their rising to its withdrawal.

If we assume its daily rotation, another and no less important question
tollows concerning the earth’s position. To be sure, heretofore there has been
virtually unanimous acceptance of the belief that the middle of the universe is
the earth. Anyone who denies that the earth occupies the middle or center of
the universe may nevertheless assert that its distance [therefrom] is insignifi-
cant in comparison with [the distance of] the sphere of the fixed stars, but
perceptible and noteworthy in relation to the spheres of the sun and the other
planets. He may deem this to be the reason why their motions appear
nonuniform, as conforming to a center other than the center of the earth. Per-
haps he can [thereby] produce a not inept explanation of the apparent
nonuniform motion. For the fact that the same planets are observed nearer to
the earth and farther away necessarily proves that the center of the earth is not
the center of their circles. It is less clear whether the approach and withdrawal
are executed by the earth or the planets.

It will occasion no surprise if, in addition to the daily rotation, some other
motion is assigned to the earth. That the earth rotates, that it also travels with
several motions, and that it is one of the heavenly bodies are said to have been
the opinions of Philolaus the Pythagorean. He was no ordinary astronomer,
inasmuch as Plato did not delay going to Italy for the sake of visiting him, as
Plato’s biographers report.

But many have thought it possible to prove by geometrical reasoning that
the earth is in the middle of the universe; that being like a point in relation to
the immense heavens, it serves as their center; and that it is motionless because,

when the universe moves, the center

remains unmoved, and the things nearest to the center are carried most slowly.
The immensity of the heavens compared to the size of the earth.

Chapter 6.

The massive bulk of the earth does indeed shrink to insignificance in compari-

son with the size of the heavens. This can be ascertained from the fact that the
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boundary circles (for that is the translation of the Greek term Aorizons) bisect
the entire sphere of the heavens. This could not happen if the earth’s size or
distance from the universe’s center were noteworthy in comparison with the
heavens. For, a circle that bisects a sphere passes
through its center, and is the greatest circle that can . /—\

be described on it. AL

Thus, let circle ABCD be a horizon, and let the

earth, from which we do our observing, be E, the [€

center of the horizon, which separates what is seen

from what is not seen. Now, through a dioptra or
horoscopic instrument or water level placed at E, let the first point of the Crab
be sighted rising at point C, and at that instant the first point of the Goat is
perceived to be setting at A. Then A, E, and C are on a straight line through
the dioptra. This line is evidently a diameter of the ecliptic, since six visible
signs form a semicircle, and E, the [line’s] center, is identical with the horizon’s
center. Again, let the signs shift their position until the first point of the Goat
rises at B. At that time the Crab will also be observed setting at D. BED will be
a straight line and a diameter of the ecliptic. But, as we have already seen, AEC
also is a diameter of the same circle. Its center, obviously, is the intersection [of
the diameters]. A horizon, then, in this way always bisects the ecliptic, which is
a great circle of the sphere. But on a sphere, if a circle bisects any great circle,
the bisecting circle is itself a great circle. Consequently a horizon is one of the
great circles, and its center is clearly identical with the center of the ecliptic.
Yet a line drawn from the earth’s surface [to a point in the firmament] must
be distinct from the line drawn from the earth’s center [to the same point].
Nevertheless, because these lines are immense in relation to the earth, they
become like parallel lines [III, 15]. Because their terminus is enormously re-

mote they appear to be a single line.

For in comparison with their length the space enclosed by them becomes im-
perceptible, as is demonstrated in optics. This reasoning certainly makes it quite
clear that the heavens are immense by comparison with the earth and present
the aspect of an infinite magnitude, while on the testimony of the senses the
earth is related to the heavens as a point to a body, and a finite to an infinite
magnitude.

But no other conclusion seems to have been established. For it does not

follow that the earth must be at rest in the middle of the universe. Indeed, a
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rotation in twenty-four hours of the enormously vast universe should astonish
us even more than a rotation of its least part, which is the earth. For, the argu-
ment that the center is motionless, and what is nearest the center moves the
least, does not prove that the earth is at rest in the middle of the universe.

To take a similar case, suppose you say that the heavens rotate but the poles
are stationary, and what is closest to the poles moves the least. The Little Bear,
for example, being very close to the pole, is observed to move much more slowly
than the Eagle or the Little Dog because it describes a smaller circle. Yet all
these constellations belong to a single sphere. A sphere’s movement, vanishing
at its axis, does not permit an equal motion of all its parts. Nevertheless these
are brought round in equal times, though not over equal spaces, by the rotation
of the whole sphere. The upshot of the argument, then, is the claim that the
earth as a part of the celestial sphere shares in the same nature and movement
so that, being close to the center, it has a slight motion. Therefore, being a body
and not the center, it too will describe arcs like those of a celestial circle, though
smaller, in the same time. The falsity of this contention is clearer than daylight.
For it would always have to be noon in one place, and always midnight in
another, so that the daily risings and settings could not take place, since the
motion of the whole and the part would be one and inseparable.

But things separated by the diversity of their situations are subject to a very
different relation: those enclosed in a smaller orbit revolve faster than those
traversing a bigger circle. Thus Saturn, the highest of the planets, revolves in
thirty years; the moon, undoubtedly the nearest to the earth, completes its course
in a month; and to close the series, it will be thought, the earth rotates in the
period of a day and a night. Accordingly the same question about the daily
rotation emerges again. On the other hand, likewise still undetermined is the
earth’s position, which has been made even less certain by what was said above.
For that proof establishes no conclusion other than the heavens’ unlimited size

in relation to the earth. Yet how far this immensity extends is not at all clear.

Why the ancients thought that the earth remained at rest in the middle of
the universe as its center. Chapter 7.

Accordingly, the ancient philosophers sought to establish that the earth re-
mains at rest in the middle of the universe by certain other arguments. As their
main reason, however, they adduce heaviness and lightness. Earth is in fact the
heaviest element, and everything that has weight is borne toward it in an effort

to reach its inmost center. The earth being spherical, by their own nature heavy
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objects are carried to it from all directions at right angles to its surface. Hence,
if they were not checked at its surface, they would collide at its center, since a
straight line perpendicular to a horizontal plane at its point of tangency with a
sphere leads to the center. But things brought to the middle, it seems to follow,
come to rest at the middle. All the more, then, will the entire earth be at rest in
the middle, and as the recipient of every falling body it will remain motionless
thanks to its weight.

In like manner, the ancient philosophers analyze motion and its nature in a
turther attempt to confirm their conclusion. Thus, according to Aristotle, the
motion of a single simple body is simple; of the simple motions, one is straight
and the other is circular; of the straight motions, one is upward and the other is
downward. Hence every simple motion is either toward the middle, that is,
downward; or away from the middle, that is, upward; or around the middle,
that is, circular. To be carried downward, that is, to seek the middle, is a prop-
erty only of earth and water, which are considered heavy; on the other hand, air
and fire, which are endowed with lightness, move upward and away from the
middle. To these four elements it seems reasonable to assign rectilinear motion,
but to the heavenly bodies, circular motion around the middle. This is what
Aristotle says [ Heavens, 1, 2; 11, 14].

Therefore, remarks Ptolemy of Alexandria [ Syntaxis, 1, 7], if the earth were
to move, merely in a daily rotation, the opposite of what was said above would
have to occur, since a motion would have to be exceedingly violent and its
speed unsurpassable to carry the entire circumference of the earth around in
twenty-four hours. But things which undergo an abrupt rotation seem utterly
unsuited to gather [bodies to themselves], and seem more likely, if they have
been produced by combination, to fly apart unless they are held together by
some bond. The earth would long ago have burst asunder, he says, and dropped

out of the skies (a quite preposterous notion);

and, what is more, living creatures and any other loose weights would by no
means remain unshaken. Nor would objects falling in a straight line descend
perpendicularly to their appointed place, which would meantime have been
withdrawn by so rapid a movement. Moreover, clouds and anything else float-

ing in the air would be seen drifting always westward.
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The inadequacy of the previous arguments and a refutation of them.
Chapter 8.

For these and similar reasons forsooth the ancients insist that the earth remains
at rest in the middle of the universe, and that this is its status beyond any doubt.
Yet if anyone believes that the earth rotates, surely he will hold that its motion
is natural, not violent. But what is in accordance with nature produces effects
contrary to those resulting from violence, since things to which force or vio-
lence is applied must disintegrate and cannot long endure. On the other hand,
that which is brought into existence by nature is well-ordered and preserved in
its best state. Ptolemy has no cause, then, to fear that the earth and everything
earthly will be disrupted by a rotation created through nature’s handiwork, which
is quite different from what art or human intelligence can accomplish.

But why does he not feel this apprehension even more for the universe,
whose motion must be the swifter, the bigger the heavens are than the earth?
Or have the heavens become immense because the indescribable violence of
their motion drives them away from the center? Would they also fall apart if
they came to a halt? Were this reasoning sound, surely the size of the heavens
would likewise grow to infinity. For the higher they are driven by the power of
their motion, the faster that motion will be, since the circumference of which it
must make the circuit in the period of twenty-four hours is constantly expand-
ing; and, in turn, as the velocity of the motion mounts, the vastness of the
heavens is enlarged. In this way the speed will increase the size, and the size the
speed, to infinity. Yet according to the familiar axiom of physics that the infi-
nite cannot be traversed or moved in any way, the heavens will therefore neces-
sarily remain stationary.

But beyond the heavens there is said to be no body, no space, no void, abso-
lutely nothing, so that there is nowhere the heavens can go. In that case it is
really astonishing if something can be held in check by nothing. If the heavens
are infinite, however, and finite at their inner concavity only, there will perhaps
be more reason to believe that beyond the heavens there is nothing. For, every

single thing,

no matter what size it attains, will be inside them, but the heavens will abide
motionless. For, the chief contention by which it is sought to prove that the
universe 1s finite is its motion. Let us therefore leave the question whether the
universe is finite or infinite to be discussed by the natural philosophers.

We regard it as a certainty that the earth, enclosed between poles, is bounded
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by a spherical surface. Why then do we still hesitate to grant it the motion
appropriate by nature to its form rather than attribute a movement to the entire
universe, whose limit is unknown and unknowable? Why should we not admit,
with regard to the daily rotation, that the appearance is in the heavens and the
reality in the earth? This situation closely resembles what Vergil’s Aeneas says:
Forth from the harbor we sail, and the land and the cities slip backward [Aeneid,
III, 72]. For when a ship is floating calmly along, the sailors see its motion
mirrored in everything outside, while on the other hand they suppose that they
are stationary, together with everything on board. In the same way, the motion
of the earth can unquestionably produce the impression that the entire uni-
verse 1s rotating.

Then what about the clouds and the other things that hang in the air in any
manner whatsoever, or the bodies that fall down, and conversely those that rise
aloft? We would only say that not merely the earth and the watery element
joined with it have this motion, but also no small part of the air and whatever is
linked in the same way to the earth. The reason may be either that the nearby
air, mingling with earthy or watery matter, conforms to the same nature as the
earth, or that the air’s motion, acquired from the earth by proximity, shares
without resistance in its unceasing rotation. No less astonishingly, on the other
hand, is the celestial movement declared to be accompanied by the uppermost
belt of air. This is indicated by those bodies that appear suddenly, I mean, those
that the Greeks called “comets” and “bearded stars.” Like the other heavenly
bodies, they rise and set. They are thought to be generated in that region. That
part of the air, we can maintain, is unaffected by the earth’s motion on account
of its great distance from the earth. The air closest to the earth will accordingly
seem to be still. And so will the things suspended in it, unless they are tossed to
and fro, as indeed they are, by the wind or some other disturbance. For what
else is the wind in the air but the wave in the sea?

We must in fact avow that the motion of falling and rising bodies in the
framework of the universe is twofold, being in every case a compound of straight

and circular. For, things that sink of their own weight,

being predominantly earthy, undoubtedly retain the same nature as the whole
of which they are parts. Nor is the explanation different in the case of those
things, which, being fiery, are driven forcibly upward. For also fire here on the
earth feeds mainly on earthy matter, and flame is defined as nothing but blaz-

ing smoke. Now it is a property of fire to expand what it enters. It does this
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with such great force that it cannot be prevented in any way by any device from
bursting through restraints and completing its work. But the motion of expan-
sion is directed from the center to the circumference. Therefore, if any part of
the earth is set afire, it is carried from the middle upwards. Hence the state-
ment that the motion of a simple body is simple holds true in particular for
circular motion, as long as the simple body abides in its natural place and with
its whole. For when it is in place, it has none but circular motion, which re-
mains wholly within itself like a body at rest. Rectilinear motion, however,
affects things which leave their natural place or are thrust out of it or quit it in
any manner whatsoever. Yet nothing is so incompatible with the orderly ar-
rangement of the universe and the design of the totality as something out of
place. Therefore rectilinear motion occurs only to things that are not in proper
condition and are not in complete accord with their nature, when they are
separated from their whole and forsake its unity.

Furthermore, bodies that are carried upward and downward, even when
deprived of circular motion, do not execute a simple, constant, and uniform
motion. For they cannot be governed by their lightness or by the impetus of
their weight. Whatever falls moves slowly at first, but increases its speed as it
drops. On the other hand, we see this earthly fire (for we behold no other),
after it has been lifted up high, slacken all at once, thereby revealing the reason
to be the violence applied to the earthy matter. Circular motion, however, al-
ways rolls along uniformly, since it has an unfailing cause. But rectilinear mo-
tion has a cause that quickly stops functioning. For when rectilinear motion
brings bodies to their own place, they cease to be heavy or light, and their
motion ends. Hence, since circular motion belongs to wholes, but parts have
rectilinear motion in addition, we can say that “circular” subsists with “rectilin-
ear” as “being alive” with “being sick.” Surely Aristotle’s division of simple motion
into three types, away from the middle, toward the middle, and around the
middle, will be construed merely as a logical exercise. In like manner we distin-
guish line, point, and surface, even though one cannot exist without another,

and none of them

without body.

As a quality, moreover, immobility is deemed nobler and more divine than
change and instability, which are therefore better suited to the earth than to the
universe. Besides, it would seem quite absurd to attribute motion to the frame-

work of space or that which encloses the whole of space, and not, more appro-
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priately, to that which is enclosed and occupies some space, namely, the earth.
Last of all, the planets obviously approach closer to the earth and recede farther
from it. Then the motion of a single body around the middle, which is thought
to be the center of the earth, will be both away from the middle and also toward
it. Motion around the middle, consequently, must be interpreted in a more
general way, the sufficient condition being that each such motion encircle its
own center. You see, then, that all these arguments make it more likely that the
earth moves than that it is at rest. This is especially true of the daily rotation, as
particularly appropriate to the earth. This is enough, in my opinion, about the
first part of the question.

Can several motions be attributed to the earth? The center of the universe.
Chapter 9.

Accordingly, since nothing prevents the earth from moving, I suggest that we
should now consider also whether several motions suit it, so that it can be
regarded as one of the planets. For, it is not the center of all the revolutions.
This is indicated by the planets’ apparent nonuniform motion and their vary-
ing distances from the earth. These phenomena cannot be explained by circles
concentric with the earth. Therefore, since there are many centers, it will not be
by accident that the further question arises whether the center of the universe
is identical with the center of terrestrial gravity or with some other point. For
my part I believe that gravity is nothing but a certain natural desire, which the
divine providence of the Creator of all things has implanted in parts, to gather
as a unity and a whole by combining in the form of a globe. This impulse is
present, we may suppose, also in the sun, the moon, and the other brilliant
planets, so that through its operation they remain in that spherical shape which
they display. Nevertheless, they swing round their circuits in divers ways. If,
then, the earth too moves in other ways, for example, about a center, its addi-
tional motions must likewise be reflected in many bodies outside it. Among
these motions we find the yearly revolution. For if this is transformed from a

solar to a terrestrial movement, with the sun acknowledged to be at rest,

the risings and settings which bring the zodiacal signs and fixed stars into view
morning and evening will appear in the same way. The stations of the planets,
moreover, as well as their retrogradations and [resumptions of | forward mo-
tion will be recognized as being, not movements of the planets, but a motion of

the earth, which the planets borrow for their own appearances. Lastly, it will be
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realized that the sun occupies the middle of the universe. All these facts are
disclosed to us by the principle governing the order in which the planets follow
one another, and by the harmony of the entire universe, if only we look at the

matter, as the saying goes, with both eyes.

The order of the heavenly spheres. Chapter 0.

Of all things visible, the highest is the heaven of the fixed stars. This, I see, is
doubted by nobody. But the ancient philosophers wanted to arrange the planets
in accordance with the duration of the revolutions. Their principle assumes that
of objects moving equally fast, those farther away seem to travel more slowly, as is
proved in Euclid’s Optics. The moon revolves in the shortest period of time be-
cause, in their opinion, it runs on the smallest circle as the nearest to the earth.
The highest planet, on the other hand, is Saturn, which completes the biggest
circuit in the longest time. Below it is Jupiter, followed by Mars.

With regard to Venus and Mercury, however, differences of opinion are
tound. For, these planets do not pass through every elongation from the sun, as
the other planets do. Hence Venus and Mercury are located above the sun by
some authorities, like Plato’s Timaeus [38 D], but below the sun by others, like
Ptolemy [Syntaxis, IX, 1] and many of the moderns. Al-Bitruji places Venus
above the sun, and Mercury below it.

According to Plato’s followers, all the planets, being dark bodies otherwise,
shine because they receive sunlight. If they were below the sun, therefore, they
would undergo no great elongation from it, and hence they would be seen halved
or at any rate less than fully round. For, the light which they receive would be
reflected mostly upward, that is, toward the sun, as we see in the new or dying
moon. In addition, they argue, the sun must sometimes be eclipsed by the inter-
position of these planets, and its light cut off in proportion to their size. Since
this is never observed, these planets do not pass beneath the sun at all.

On the other hand, those who locate Venus and Mercury below the sun
base their reasoning on the wide space which they notice between the sun and

the moon.

For the moon’s greatest distance from the earth is 64% earth-radii. This is con-
tained, according to them, about 18 times in the sun’s least distance from the
earth, which is 1160 earth-radii. Therefore between the sun and the moon there
are 1096 earth-radii. Consequently, to avoid having so vast a space remain empty,

they announce that the same numbers almost exactly fill up the apsidal dis-
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tances, by which they compute the thickness of those spheres. Thus the moon’s
apogee is followed by Mercury’s perigee. Mercury’s apogee is succeeded by the
perigee of Venus, whose apogee, finally, almost reaches the sun’s perigee. For
between the apsides of Mercury they calculate about 177% earth-radii. Then
the remaining space is very nearly filled by Venus’ interval of 910 earth-radii.

Therefore they do not admit that these heavenly bodies have any opacity
like the moon’s. On the contrary, these shine either with their own light or with
the sunlight absorbed throughout their bodies. Moreover, they do not eclipse
the sun, because it rarely happens that they interfere with our view of the sun,
since they generally deviate in latitude. Besides, they are tiny bodies in com-
parison with the sun. Venus, although bigger than Mercury, can occult barely a
hundredth of the sun. So says Al-Battani of Raqqa, who thinks that the sun’s
diameter is ten times larger [than Venus’], and therefore so minute a speck is
not easily descried in the most brilliant light. Yet in his Paraphrase of Ptolemy,
Ibn Rushd reports having seen something blackish when he found a conjunc-
tion of the sun and Mercury indicated in the tables. And thus these two planets
are judged to be moving below the sun’s sphere.

But this reasoning also is weak and unreliable. This is obvious from the fact
that there are 38 earth-radii to the moon’s perigee, according to Ptolemy [ Syz-
taxis, V, 13], but more than 49 according to a more accurate determination, as
will be made clear below. Yet so great a space contains, as we know, nothing but
air and, if you please, also what is called “the element of fire.” Moreover, the
diameter of Venus’ epicycle which carries it 45° more or less to either side of the
sun, must be six times longer than the line drawn from the earth’s center to
Venus’ perigee, as will be demonstrated in the proper place [V, 21]. In this en-
tire space which would be taken up by that huge epicycle of Venus and which,
moreover, is so much bigger than what would accommodate the earth, air, acther,

moon, and Mercury,

what will they say is contained if Venus revolved around a motionless earth?
Ptolemy [Synzaxis, IX, 1] argues also that the sun must move in the middle
between the planets which show every elongation from it and those which do
not. This argument carries no conviction because its error is revealed by the fact
that the moon too shows every elongation from the sun.
Now there are those who locate Venus and then Mercury below the sun, or
separate these planets [from the sun] in some other sequence. What reason will

they adduce to explain why Venus and Mercury do not likewise traverse sepa-
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rate orbits divergent from the sun, like the other planets, without violating the
arrangement [of the planets] in accordance with their [relative] swiftness and
slowness?

Then one of two alternatives will have to be true. Either the earth is not the
center to which the order of the planets and spheres is referred, or there really is
no principle of arrangement nor any apparent reason why the highest place
belongs to Saturn rather than to Jupiter or any other planet.

In my judgment, therefore, we should not in the least disregard what was
familiar to Martianus Capella, the author of an encyclopedia, and to certain
other Latin writers. For according to them, Venus and Mercury revolve around
the sun as their center. This is the reason, in their opinion, why these planets
diverge no farther from the sun than is permitted by the curvature of their
revolutions. For they do not encircle the earth, like the other planets, but “have
opposite circles.” Then what else do these authors mean but that the center of
their spheres is near the sun? Thus Mercury’s sphere will surely be enclosed
within Venus’, which by common consent is more than twice as big, and inside
that wide region it will occupy a space adequate for itself. If anyone seizes this
opportunity to link Saturn, Jupiter, and Mars also to that center, provided he
understands their spheres to be so large that together with Venus and Mercury
the earth too is enclosed inside and encircled, he will not be mistaken, as is
shown by the regular pattern of their motions.

For [these outer planets] are always closest to the earth, as is well known,
about the time of their evening rising, that is, when they are in opposition to
the sun, with the earth between them and the sun. On the other hand, they are
at their farthest from the earth at the time of their evening setting, when they
become invisible in the vicinity of the sun, namely, when we have the sun be-
tween them and the earth. These facts are enough to show that their center
belongs more to the sun, and is identical with the center around which Venus
and Mercury likewise execute their revolutions.

But since all these planets are related to a single center, the space remaining
between Venus’ convex sphere and Mars’ concave sphere must be set apart as

also a sphere

or spherical shell, both of whose surfaces are concentric with those spheres.
This [intercalated sphere] receives the earth together with its attendant, the
moon, and whatever is contained within the moon’s sphere. Mainly for the

reason that in this space we find quite an appropriate and adequate place for
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the moon, we can by no means detach it from the earth, since it is incontrovert-
ibly nearest to the earth.

Hence I feel no shame in asserting that this whole region engirdled by the
moon, and the center of the earth, traverse this grand circle amid the rest of the
planets in an annual revolution around the sun. Near the sun is the center of
the universe. Moreover, since the sun remains stationary, whatever appears as a
motion of the sun is really due rather to the motion of the earth. In comparison
with any other spheres of the planets, the distance from the earth to the sun has
a magnitude which is quite appreciable in proportion to those dimensions. But
the size of the universe is so great that the distance earth-sun is imperceptible
in relation to the sphere of the fixed stars. This should be admitted, I believe, in
preference to perplexing the mind with an almost infinite multitude of spheres,
as must be done by those who kept the earth in the middle of the universe. On
the contrary, we should rather heed the wisdom of nature. Just as it especially
avoids producing anything superfluous or useless, so it frequently prefers to
endow a single thing with many effects.

All these statements are difficult and almost inconceivable, being of course
opposed to the beliefs of many people. Yet, as we proceed, with God’s help I
shall make them clearer than sunlight, at any rate to those who are not
unacquainted with the science of astronomy. Consequently, with the first prin-
ciple remaining intact, for nobody will propound a more suitable principle than
that the size of the spheres is measured by the length of the time, the order of
the spheres is the following, beginning with the highest.

The first and the highest of all is the sphere of the fixed stars, which con-
tains itself and everything, and is therefore immovable. It is unquestionably the
place of the universe, to which the motion and position of all the other heav-
enly bodies are compared. Some people think that it also shifts in some way. A
different explanation of why this appears to be so will be adduced in my discus-
sion of the earth’s motion [I, 11].

[The sphere of the fixed stars] is followed by the first of the planets, Saturn,
which completes its circuit in 30 years. After Saturn, Jupiter accomplishes its
revolution in 12 years. Then Mars revolves in 2 years. The annual revolution

takes the series’ fourth place,
which contains the earth, as I said [earlier in I, 10], together with the lunar
sphere as an epicycle. In the fifth place Venus returns in 9 months. Lastly, the

sixth place is held by Mercury, which revolves in a period of 8o days.
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At rest, however, in the middle of everything is the sun. For in this most
beautiful temple, who would place this lamp in another or better position than
that from which it can light up the whole thing at the same time? For, the sun
is not inappropriately called by some people the lantern of the universe, its
mind by others, and its ruler by still others. [Hermes] the Thrice Greatest la-
bels it a visible god, and Sophocles’ Electra, the all-seeing. Thus indeed, as
though seated on a royal throne, the sun governs the family of planets revolving
around it. Moreover, the earth is not deprived of the moon’s attendance. On
the contrary, as Aristotle says in a work on animals, the moon has the closest
kinship with the earth. Meanwhile the earth has intercourse with the sun, and
is impregnated for its yearly parturition.

In this arrangement, therefore, we discover

a marvelous symmetry of the universe, and an established harmonious linkage
between the motion of the spheres and their size, such as can be found in no
other way. For this permits a not inattentive student to perceive why the for-

ward and backward arcs appear greater in Jupiter than in Saturn and smaller
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than in Mars, and on the other hand greater in Venus than in Mercury. This
reversal in direction appears more frequently in Saturn than in Jupiter, and also
more rarely in Mars and Venus than in Mercury. Moreover, when Saturn, Jupi-
ter, and Mars rise at sunset, they are nearer to the earth than when they set in
the evening or appear at a later hour. But Mars in particular, when it shines all
night, seems to equal Jupiter in size, being distinguished only by its reddish
color. Yet in the other configurations it is found barely among the stars of the
second magnitude, being recognized by those who track it with assiduous ob-
servations. All these phenomena proceed from the same cause, which is in the
earth’s motion.

Yet none of these phenomena appears in the fixed stars. This proves their
immense height, which makes even the sphere of the annual motion, or its
reflection, vanish from before our eyes. For, every visible object has some meas-
ure of distance beyond which it is no longer seen, as is demonstrated in optics.
From Saturn, the highest of the planets, to the sphere of the fixed stars there is
an additional gap of the largest size. This is shown by the twinkling lights of
the stars. By this token in particular they are distinguished from the planets, for
there had to be a very great difference between what moves and what does not
move. So vast, without any question, is the divine handiwork of the most excel-

lent Almighty.

Proof of the earth’s triple motion. Chapter 11.

In so many and such important ways, then, do the planets bear witness to the
earth’s mobility. I shall now give a summary of this motion, insofar as the phe-
nomena are explained by it as a principle. As a whole, it must be admitted to be
a threefold motion.

The first motion, named nuchthemeron by the Greeks, as I said [I, 4], is the
rotation which is the characteristic of a day plus a night. This turns around the
earth’s axis from west to east, just as the universe is deemed to be carried in the
opposite direction. It describes the equator, which some people call the “circle

of equal days,” in imitation of the designation used by the Greeks,

whose term for it is isemerinos.

The second is the yearly motion of the center, which traces the ecliptic
around the sun. Its direction is likewise from west to east, that is, in the order of
the zodiacal signs. It travels between Venus and Mars, as I mentioned [I, 10],

together with its associates. Because of it, the sun seems to move through the
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zodiac in a similar motion. Thus, for example, when the earth’s center is pass-
ing through the Goat, the sun appears to be traversing the Crab; with the earth
in the Water Bearer, the sun seems to be in the Lion, and so on, as I remarked.

To this circle, which goes through the middle of the signs, and to its plane,
the equator and the earth’s axis must be understood to have a variable inclina-
tion. For if they stayed at a constant angle, and were affected exclusively by the
motion of the center, no inequality of days and nights would be observed. On
the contrary, it would always be either the longest or shortest day or the day of
equal daylight and darkness, or summer or winter, or whatever the character of
the season, it would remain identical and unchanged.

The third motion in inclination is consequently required. This also is a
yearly revolution, but it occurs in the reverse order of the signs, that is, in the
direction opposite to that of the motion of the center. These two motions are
opposite in direction and nearly equal in period. The result is that the earth’s
axis and equator, the largest of the parallels of latitude on it, face almost the
same portion of the heavens, just as if they remained motionless. Meanwhile
the sun seems to move through the obliquity of the ecliptic with the motion of
the earth’s center, as though this were the center of the universe. Only remem-
ber that, in relation to the sphere of the fixed stars, the distance between the
sun and the earth vanishes from our sight forthwith.

Since these are matters which crave to be set before our eyes rather than
spoken of, let us describe a circle ABCD, which the annual revolution of the
earth’s center has traced in the plane of the ecliptic. Near its center let the sun
be E. I shall divide this circle into four parts by drawing the diameters AEC
and BED. Let A represent the first point of the Crab, B of the Balance, C of
the Goat, and D of the Ram. Now let us assume that the earth’s center is origi-
nally at A. About A I shall draw the terrestrial equator FGHI. This is not in
the same plane [as the ecliptic], except that the diameter GALI is the intersec-
tion of the circles, I mean, of the equator and the ecliptic. Draw also the diam-
eter FAH perpendicular to GAI F being the limit of the [equator’s] greatest
inclination to the south, and H to the north. Under the conditions thus set
forth, the earth’s inhabitants will see the sun near the center E undergo the

winter solstice in the Goat. This occurs because the greatest
northward inclination, H, is turned toward the sun. For, the inclination of the
equator to the line AE, through the agency of the daily rotation, traces the

winter solstice parallel to the equator at an interval subtended by EAH, the
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angle of the obliquity.

Now let the earth’s center start out in the order of the signs, and let F, the
limit of maximum inclination, travel along an equal arc in the reverse order of
the signs, until at B both have traversed a quadrant of their circles. In the in-
terim the angle EAI always remains equal to AEB, on account of the equality
of their revolutions; and the diameters always stay parallel to each other, FAH
to FBH, and GAI to GBI, and the equator to the equator. In the immensity of
the heavens, for the reason already frequently mentioned, the same phenomena
appear. Therefore from B, the first point of the Balance, E will seem to be in
the Ram. The intersection of the circles will coincide with the single line GBIE,
from which [the plane of the axis] will not be permitted by the daily rotation to
deviate. On the contrary, the [axis’] inclination will lie entirely in the lateral
plane. Accordingly the sun will be seen in the spring equinox. Let the earth’s

center proceed under the assumed conditions,

and when it has completed a semicircle at C, the sun will appear to enter the
Crab. But F, the southernmost inclination of the equator, will be turned toward
the sun. This will be made to appear in the north, undergoing the summer

solstice as measured by the angle of the obliquity, ECF. Again, when F turns
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away in the third quadrant of the circle, the intersection GI will once more fall
on the line ED. From here the sun will be seen in the Balance undergoing the
autumn equinox. Then as H by the same process gradually faces the sun, it will
bring about a repetition of the initial situation, with which I began my survey.

Alternatively, let AEC be in the same way a diameter of the plane under
discussion [the ecliptic] as well as the intersection of that plane with a circle
perpendicular thereto. On AEC, around A and C, that is, in the Crab and the
Goat, draw a circle of the earth in each case through the poles. Let this be
DGFI, the earth’s axis DF, the north pole D, the south pole F, and GI the
diameter of the equator. Now when F is turned toward the sun, which is near
E, the equator’s northward inclination being measured by the angle IAE, then
the axial rotation will describe, parallel to the equator and to the south of it, at
a distance LI and with diameter KL, the tropic of Capricorn as seen in the sun.
Or, to speak more accurately, the axial rotation, as viewed from AE, generates a
conic surface, having its vertex in the center of the earth, and its base in a circle
parallel to the equator. Also at the opposite point, C, everything works out in
like manner, but is reversed. It is clear therefore how the two motions, I mean,
the motion of the center and the motion in inclination, by their combined
effect make the earth’s axis remain in the same direction and in very much the
same position, and make all these phenomena appear as though they were
motions of the sun.

I said, however, that the annual revolutions of the center and of inclination
are nearly equal. For if they were exactly equal, the equinoctial and solstitial
points as well as the entire obliquity of the ecliptic would have to show no shift

at all with reference to the sphere of the fixed stars. But since there is a slight

variation, it was discovered only as it grew larger with the passage of time.
From Ptolemy to us the precession of the equinoxes amounts to almost 21°. For
this reason some people believed that the sphere of the fixed stars also moves,

and accordingly they adopted a surmounting ninth sphere. This having proved
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inadequate, more recent writers now add on a tenth sphere. Yet they do not in
the least attain their goal, which I hope to reach by the earth’s motion. This I
shall use as a principle and hypothesis in the demonstration of the other [mo-

tions].

Straight lines subtended in a circle. ~ Chapter 12.

The proofs which I shall use in almost the entire work involve straight lines
and arcs in plane and spherical triangles. Although much information about
these topics is already available in Euclid’s Elements, nevertheless that treatise
does not contain the answer to what is the principal question here, how the
sides can be obtained from the angles, and the angles from the sides.

The measure of a subtended straight line is not the angle, nor is the angle
measured by the line. On the contrary, the measure is the arc. Hence a method
has been discovered whereby the lines subtending any arc are known. With the
help of these lines, the arc corresponding to the angle may be obtained; and
conversely the straight line intercepted by the angle may be obtained through
the arc. It therefore seems not inappropriate for me to discuss these lines in the
tollowing Book, and also the sides and angles of both plane and spherical trian-
gles, which were treated by Ptolemy in scattered examples. I should like to
finish these topics once and for all here, thereby clarifying what I have to say
later on.

In accordance with the common practice of mathematicians, I have divided
the circle into 360°. With regard to the diameter, however, [a division into] 120
units was adopted by the ancients [for example, Ptolemy, Synzaxis, I, 10]. But
later writers wanted to avoid the complication of fractions in multiplying and
dividing the numbers for the lines [subtended in a circle], most of which are
incommensurable as lengths, and often even when squared. Some of these later
writers resorted to 1,200,000 units; others, 2,000,000; and still others estab-
lished some other sensible diameter, after the Hindu symbols for numbers came
into use. This numerical notation certainly surpasses every other, whether Greek

or Latin, in lending itself to computations with exceptional speed.

For this reason I too have accepted 200,000 units in a diameter as sufficient to
be able to exclude any obvious error. For where quantities are not related to
each other as one integer to another, it is enough to obtain an approximation. I

shall explain this in six theorems and one problem, following Ptolemy closely.
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Theorem 1.
The diameter of a circle being given, the sides of the triangle, square, pentagon,
hexagon, and decagon circumscribed by the circle are also given.

For, the radius, as half of the diameter, is equal to the side of the hexagon.
But the square on the side of the triangle is three times, and the square on the

side of the square is twice, the square on the

side of the hexagon, as is demonstrated in Eu- | “=—%F B >

clid’s Elements. Therefore the side of the hexa-

gon is given as 100,000 units long; the side of the square as 141,422; and the side

of the triangle as 173,205.

Now let the side of the hexagon be AB. Let it be divided at the point C in
mean and extreme ratio, in accordance with Euclid, Book II, Problem 1, or VI,
10. Let the greater segment be CB, and let it be extended an equal length, BD.
Then the whole line ABD also will be divided in extreme and mean ratio. As
the smaller segment, the extension BD is the side of the decagon inscribed in
the circle in which AB is the side of the hexagon, as is clear from Euclid, XIII,
sand 9.

Now BD will be obtained as follows. Bisect AB at E. From Euclid, XIII, 3,
it is clear that the square of EBD equals five times the square of EB. But EB is
given as 50,000 units long. Five times its square gives EBD as 111,803 units
long. If EB’s 50,000 are subtracted, the remainder is BD’s 61,803 units, the side
of the decagon which we were looking for.

Furthermore, the side of the pentagon, the square on which is equal to the
sum of the squares on the sides of the hexagon and decagon, is given as 117,557
units.

Therefore, when the diameter of a circle is given, the sides of the triangle,
square, pentagon, hexagon, and decagon which can be inscribed in the circle

are given. Q.E.D.

Corollary.
Consequently it is clear that when the chord subtending any arc is given, the

chord subtending the rest of the semicircle is also given.

The angle inscribed in a semicircle is a right angle. Now in right triangles,
the square on the diameter, that is, the side subtending the right angle, is equal
to the squares on the sides forming the right angle. Now the side of the deca-

gon, which subtends an arc of 36° has been shown [Theorem I to consist of
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61,803 units, of which the diameter contains 200,000. Hence the chord sub-
tending the remaining 144° of the semicircle is also given as consisting of 190,211
units. And from the side of the pentagon which, with its 117,557 units of the
diameter, subtends an arc of 72° the straight line subtending the remaining 108°

of the semicircle is obtained as 161,803 units.

Theorem II.
If a quadrilateral is inscribed in a circle, the rectangular product of the diago-
nals is equal to the rectangular products of the opposite sides.

For let the quadrilateral inscribed in a circle be ABCD. I say that the prod-
uct of the diagonals AC x DB is equal to the products of AB x DC and AD x
BC. For let us make the angle ABE equal to the angle at CBD. Then the whole
angle ABD is equal to the whole angle EBC, an-

gle EBD being taken as common to both. Moreo-
ver, the angles at ACB and BDA are equal to each

other, since they intercept the same segment of

the circle. Therefore the two similar triangles
[BCE and BDA] will have their sides proportional,
BC:BD = EC:AD, and the product of EC x BD

is equal to the product of BC X AD. But also the triangles ABE and CBD are
similar, because the angles at ABE and CBD are equal by construction, and the

angles BAC and BDC are equal because they intercept the same arc of the
circle. Consequently, as before, AB:BD = AE:CD, and the product of AB X
CD is equal to the product of AE x BD. But it has already been shown that the
product of AD x BC is equal to the product of BD x EC. By addition, then,
the product of BD x AC is equal to the products of AD X BC and AB x CD.

This is what it was useful to prove.

Theorem III.
For it follows from the foregoing that if the straight lines subtending unequal
arcs in a semicircle are given, the chord subtending the arc by which the larger

arc exceeds the smaller is also given.

Thus in the semicircle ABCD,
with diameter AD, let the chords subtending unequal arcs be AB and AC.
What we wish to find is the chord subtending BC. From what was said above

[Theorem I, Corollary], the chords BD and CD, subtending the arcs remain-
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ing in the semicircle, are given. As a result, in the semicircle the quadrilateral
ABCD is formed. Its diagonals AC and BD are given, together with the three
sides, AB, AD, and CD. In this quadrilateral, as
has been demonstrated already [ Theorem II], the R
product of AC x BD is equal to the product of
AB x CD and AD x BC. Therefore, if the prod- | &
uct AB % CD is subtracted from the product AC
x BD, the remainder is the product AD x BC. Hence, if we divide by AD, so

far as that is possible, we obtain a number for the chord BC, which we were

~ D

seeking.
From the foregoing, the sides of the pentagon and hexagon, for example,
are given. Consequently the chord subtending 12° the difference between them,

is given in this way as 20,905 units of the diameter.

Theorem IV.
If the chord subtending any arc is given, the chord subtending half of the arc is
also given.

Let us describe the circle ABC, and let its diameter be AC. Let BC be the
given arc with its subtending chord. From the center E, let the line EF intersect
BC atright angles. Then, according to Euclid III, 3, EF will bisect BC at F, and
when EF is extended, it will bisect the arc at D.
Also draw the chords AB and BD. ABC and EFC

are right triangles. Moreover, since they have an-

gle ECF in common, they are similar triangles.
Therefore, just as CF is half of BFC, so EF is half
of AB. But AB, which subtends the remaining arc

of the semicircle, is given [ Theorem I, Corollary].

Hence EF is likewise given, and also DEF, as the

rest of the half diameter. Let the diameter be completed as DEG. Join BG.

Then in the triangle BDG, from the right angle B the perpendicular BF falls

on the base. Consequently the product of GD x DF is equal to the square of

BD. Accordingly BD is given in length as subtending half of the arc BDC.
Since the chord subtending 12° has already been given [Theorem III], the

chord subtending 6°is also given as 10,467 units; 3°, as 5,235 units; 1%°, as 2,618

units; and %°, as 1,309 units.
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Theorem V.
Furthermore, when the chords subtending two arcs are given, the chord sub-
tending the whole arc consisting of the two arcs is also given.

In a circle let the given chords be AB and BC. I say that the chord subtend-
ing the whole arc ABC is also given. For, draw the diameters AFD and BFE,

and also the straight lines BD and CE. These
chords are given by what precedes [Theorem I,

Corollary], because AB and BC are given, and DE

is equal to AB. Join CD, completing the quadri- r Vo

lateral BCDE. Its diagonals BD and CE, as well, \ \

as three of its sides, BC, DE, and BE, are given.

The remaining side, CD, will also be given by
Theorem II. Therefore CA, as the chord subtending the rest of the semicircle,
is given as the chord subtending the whole arc ABC. This is what we were
looking for.

Then thus far the straight lines subtending 3° 1%2°, and %° have been found.
With these intervals anyone can construct a table with very precise relation-
ships. But when [it comes to] advancing by [a whole] degree and adding one to
another, or by half a degree, or in some other way, there will be a not unfounded
doubt about the chords subtending these arcs, since we lack the graphical rela-
tionships by which they would be demonstrated. Yet nothing prevents us from
attaining this result by another method, without any perceptible error and by
assuming a number which is very slightly inaccurate. Ptolemy too [ Synzaxis, 1,
10] looked for the chords subtending 1° and ¥2°, after reminding us first [of the
tollowing].

Theorem VI.
The ratio of a greater arc to a lesser arc is bigger than the ratio of the subtend-
ing straight lines.

In a circle, let the two unequal arcs, AB and BC, be contiguous, and let BC

be the greater arc. I say that the ratio BC:AB is R

bigger than the ratio BC:AB of the chords form- / 7 I\x
ing the angle B. Let it be bisected by the line BD. | 4 / = T [
Join AC. Let it intersect BD in the point E. Like- H

wise join AD and CD. They are equal because they

L}

subtend equal arcs. Now in the triangle ABC, the

line which bisects the angle also intersects AC n
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at E. Hence the ratio of the base’s segments EC:AE is equal to the ratio BC:AB.
Since BC is greater than AB, EC also is greater than EA. Erect DF perpen-
dicular to AC. DF will bisect AC at the point F, which must lie in the greater

segment, EC. In every triangle the greater angle is
opposite the greater side. Hence in triangle DEF,
the side DE is greater than DF. AD is even greater
than DE. Therefore an arc drawn with D as center,
and with DE as radius, will intersect AD, and pass
beyond DF. Let the arc intersect AD in H, and let
it be extended to the straight line DFI. Then the
sector EDI is greater than the triangle EDF. But

the triangle DEA is greater than the sector DEH. Therefore the ratio of trian-
gle DEF to triangle DEA is smaller than the ratio of sector DEI to sector
DEH. But sectors are proportional to their arcs or central angles, whereas tri-
angles which have the same vertex are proportional to their bases. Consequently
the ratio of the angles EDF:ADE is bigger than the ratio of the bases EF:AE.
Hence, by addition, the ratio of the angles FDA:ADE is bigger than the ratio
AF:AE, and in the same way CDA:ADE is bigger than AC:AE. And by sub-
traction, CDE:EDA also is bigger than CE:EA. However, the angles CDE
and EDA are to each other as the arcs CB:AB, but the bases CE:AE are as the
chords BC:AB. Therefore the ratio of the arcs CB:AB is bigger than the ratio
of the chords BC:AB. Q.E.D.

Problem.
An arc is always greater than the straight line subtending it, while a straight
line is the shortest of the lines having the same end points. Yet this inequality,

from greater to lesser portions of a circle, approaches —
e

equality, so that in the end the straight and circular
lines are extinguished simultaneously at their last
point of contact on the circle. Prior to that, conse-
quently, they must differ from each other by no per-
ceptible distinction.

For example, let arc AB be 3° and arc AC 1%2°.
The chord subtending AB has been shown [Theo-
rem IV] to consist of 5,235 units, of which the diameter is assumed to have

200,000, and the chord subtending AC has 2,618 units. The arc AB is double
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the arc AC, whereas the chord AB is less than double the chord AC, which
exceeds 2,617 by only one unit. But if we take AB as 1%2°and AC as %°, we shall
have chord AB as 2,618 units, and AC as 1,309 units. Although AC ought to be
greater than half of the chord AB, yet it seems not to differ from half; the ratios
of the arcs and straight lines now appearing to be the same. Hence we see that
we have reached the level where the difference between the straight and circu-
lar lines becomes absolutely imperceptible, as though they had merged into a
single line. Hence I have no hesitation in fitting the 1,309 units of %° in the
same proportion to the chords subtending 1° and the other fractional parts
thereof. Thus, by adding %4° to %4°, we establish the chord subtending 1°as 1,745
units; ¥2° as 872% units; and %3° as approximately 582 units.

Yet I believe that it is enough if I put in the Table only half-lines subtend-
ing double the arcs. By this shortcut I shall compress in a quadrant what for-
merly had to be spread out over a semicircle. The main reason for doing so is
that in demonstrations and calculations half-lines are used more frequently
than whole lines. I have drawn up a Table which progresses by sixths of a de-
gree. It has three columns. In the first column are the degrees, or parts, of a
circumference, and sixths of a degree. The second column contains the numeri-
cal value for the half-line subtending double the arc. The third column shows,
for each degree, the difference intervening between these numerical values.
These differences permit the interpolation of the proportional amounts corre-

sponding to individual minutes of degrees. The Table, then, is as follows.
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Table of the Straight Lines Subtended in a Circle

Differ- Differ-
ences ences
Half-Chords | for the Half-Chords |  for the
Subtending | Fractions Subtending | Fractions
Arcs Double ofa Arcs Double ofa
Degree | Minute Arcs Degree Degree | Minute Arcs Degree
o 10 291 291 6 10 10742 289
o 20 582 6 20 11031
o 30 873 6 30 11320
o 40 1163 6 40 11609
o 50 1454 6 50 11898
I o 1745 7 o 12187
I I0 2036 7 IO 12476
I 20 2327 7 20 12764 288
I 30 2617 7 30 13053
I 40 2908 7 40 13341
I | 50 3199 7 | s 13629
2 o 3490 8 o 13917
2 10 3781 8 10 14205
2 20 4071 8 20 14493
2 30 4362 8 30 14781
2 40 4653 8 40 15069
2 | 50 4943 290 8 | 50 15356 287
3 o 5234 9 o 15643
3 10 5524 9 Io 15931
3 20 5814 9 20 16218
3 30 6105 9 30 16505
3 | 40 6395 9 | 40 16792
3 50 6685 9 50 17078
4 o 6975 10 o 17365
4 10 7265 10 10 17651 286
4 20 7555 Io | 20 17937
4 30 7845 10 30 18223
4 40 8135 10 40 18509
4 50 8425 10 50 18795
5 o 8715 I o 19081
5 10 9005 11 10 19366 285
5 20 9295 11 20 19652
5 | 30 9585 I | 30 19937
5 40 9874 I 40 20222
5 50 10164 289 I 50 20507
6 o 10453 12 o 20791
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Table of the Straight Lines Subtended in a Circle

Differ- Differ-
ences ences
Half-Chords | for the Half-Chords |  for the
Subtending | Fractions Subtending | Fractions
Arcs Double ofa Arcs Double ofa
Degree | Minute Arcs Degree Degree | Minute Arcs Degree
2 I0 21076 284 18 IO 31178 276
2 20 21360 18 20 31454
2 | 30 21644 8 | 30 31730
12 40 21928 18 40 32006
12 50 22212 18 50 32282 275
13 o 22495 283 19 o 32557
13 10 22778 19 10 32832
13 20 23062 19 20 33106
13 30 23344 9 | 30 33381 274
13 | 40 23627 19 | 40 33655
13 50 23910 282 19 | 50 33929
14 o 24192 20 o 34202
14 | 10 24474 20 | 10 34475 273
14 | 20 24756 20 | 20 34748
14 30 25038 281 20 30 35021
4 | 40 25319 20 | 40 35293 272
14 50 25601 20 | 50 35505
15 o 25882 21 o 35837
15 10 26163 21 10 36108 271
15 20 26443 280 21 20 36379
15 30 26724 21 30 36650
15 40 27004 21 | 40 36920 270
15 50 27284 21 50 37190
16 o 27564 279 22 o 37460
16 10 27843 22 10 37730 269
16 20 28122 22 | 20 37999
16 30 28401 22 30 38268
16 40 28680 22 | 40 38537 268
16 50 28959 278 22 50 38805
17 o 29237 23 o 39073
17 10 29515 23 10 39341 267
17 20 29793 23 20 39608
17 | 30 30071 277 23 | 30 39875
17 40 30348 23 40 40141 266
17 | 50 30625 23 50 40408
18 o 30902 24 o 40674

45

Nicolaus Copernicus. De Revolutionibus Orbium Ceelestium, Libri VI. Nuremberg, 1543.

THE WARNOCK LIBRARY

page 16r



Table of the Straight Lines Subtended in a Circle

page 16v

Differ- Differ-
ences ences
Half-Chords | for the Half-Chords |  for the
Subtending | Fractions Subtending | Fractions
Arcs Double ofa Arcs Double ofa
Degree | Minute Arcs Degree Degree | Minute Arcs Degree
24 | 10 40939 265 30 | 10 50252 251
24 | 20 41204 30 | 20 50503
24 | 30 41469 30 | 30 50754 250
24 | 40 41734 264 30 | 40 51004
24 | 50 41998 30 | 50 51254
25 o 42262 31 o 51504 249
25 10 42525 263 31 10 51753
25 20 42788 31 20 52002 248
25 | 30 43051 31 | 30 52250
25 | 40 43313 262 31 | 40 52498 247
25 | 50 43575 31 50 52745
26 o 43837 32 o 52992 246
26 10 44098 261 32 10 53238
26 | 20 44359 32 | 20 53484
26 30 44620 260 32 30 53730 24§
26 | 40 44880 32 | 40 53975
26 | 50 45140 32 | 50 54220 244
27 | o 45399 259 3 | o 54464
27 10 45658 33 10 54708 243
27 | 20 45916 258 33 | 20 54951
27 | 30 46175 33 | 30 55194 242
27 | 40 46433 33 | 40 55436
27 | 50 46690 257 33 50 55678 241
28 | o 46947 34 | o 55919
28 10 47204 256 34 10 56160 240
28 20 47460 34 20 56400
28 | 30 47716 255 34 | 30 56641 239
28 | 40 47971 34 | 40 56880
28 50 48226 34 50 57119 238
29 | © 48481 254 35 o 57358
29 | 10 48735 35 | 10 57596
29 | 20 48989 253 35 | 20 57833 237
29 | 30 49242 35 | 30 58070
29 | 40 49495 252 35 | 4° 58307 236
29 | 50 49748 35 | 5o 58543
30 o 50000 36 o 58779 235
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Table of the Straight Lines Subtended in a Circle

Differ- Differ-
ences ences
Half-Chords | for the Half-Chords |  for the
Subtending | Fractions Subtending | Fractions
Arcs Double ofa Arcs Double ofa
Degree | Minute Arcs Degree Degree | Minute Arcs Degree
36 10 59014 23§ 42 10 67129 215
36 | 20 59248 234 42 | 20 67344
36 | 30 59482 42 | 30 67559 214
36 | 40 59716 233 42 | 40 67773
36 | 50 59949 42 | 50 67987 213
37 o 60181 232 43 o 68200 212
37 10 60413 43 10 68412
37 20 60645 231 43 20 68624 211
37 | 30 60876 43 | 30 68835
37 | 40 61107 230 43 40 69046 210
37 | 50 61337 43 | 50 69256
38 o 61566 229 44 o 69466 209
38 | 10 61795 44 | 10 69675
38 20 62024 44 | 20 69883 208
38 30 62251 228 44 30 70091 207
38 | 40 62479 44 | 40 70298
38 50 62706 227 44 | 50 70505 206
39 o 62932 45 o 70711 20§
39 10 63158 226 45 10 70916
39 | 20 63383 45 | 20 71121 204
39 | 30 63608 225 45 | 30 71325
39 | 40 63832 45 | 40 71529 203
39 | 50 64056 224 45 | 50 71732 202
40 o 64279 223 46 o 71934
40 10 64501 222 46 10 72136 201
40 | 20 64723 46 | 20 72337 200
40 | 30 64945 221 46 | 30 72537
40 | 40 65166 220 46 | 40 72737 199
40 | 50 65386 46 | 50 72936
41 o 65606 219 47 o 73135 198
41 | 10 65825 47 | 10 73333 197
41 20 66044 218 47 20 73531
41 30 66262 47 | 30 73728 196
41 | 40 66480 217 47 | 40 73924 195
41 | 50 66697 47 | 50 74119
42 o 66913 216 48 o 74314 194
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Table of the Straight Lines Subtended in a Circle

page 17v

Differ- Differ-
ences ences
Half-Chords | for the Half-Chords |  for the
Subtending | Fractions Subtending | Fractions
Arcs Double ofa Arcs Double ofa
Degree | Minute Arcs Degree Degree | Minute Arcs Degree
48 10 74508 194 54 10 8ro72 170
48 20 74702 54 20 81242 169
48 | 30 74896 54 | 30 81411
48 40 75088 192 54 40 81580 168
48 50 75280 191 54 50 81748 167
49 | © 75471 190 55 | © 81915
49 10 75661 55 10 82082 166
49 20 75851 189 55 20 82248 165
49 | 30 76040 55 | 30 82413 164
49 | 40 76229 188 55 | 40 82577
49 | 50 76417 187 55 | so 82741 163
50 o 76604 56 o 82904 162
50 10 76791 186 56 10 83066
50 20 76977 56 20 83228 161
50 30 77162 185 56 30 83389 160
50 | 40 77347 184 56 | 40 83549 159
50 | s0 77531 56 | 50 83708
st | o 77715 183 57 | o 83867 158
5I 10 77897 182 57 10 84025 157
5I 20 78079 57 20 84182
5I 30 78261 181 57 30 84339 156
5t | 40 78442 180 57 | 40 84495 155
5I 50 78622 57 50 84650
52 o 78801 179 58 o 84805 154
52 10 78980 178 58 10 84959 153
52 20 79158 58 20 85112 152
52 | 30 79335 177 8 | 30 85264
52 | 40 79512 176 58 | 40 85415 15T
52 50 79688 58 50 85566 150
3 | o 79864 175 59 | o 85717
53 10 80038 174 59 10 85866 149
53 20 80212 59 20 86015 148
53 | 30 80386 173 59 | 30 86163 147
53 40 80558 172 59 40 86310
53 | 5o 80730 59 | 50 86457 146
54 o 80902 171 60 o 86602 14§
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Table of the Straight Lines Subtended in a Circle

Differ- Differ-
ences ences
Half-Chords | for the Half-Chords |  for the
Subtending | Fractions Subtending | Fractions
Arcs Double ofa Arcs Double ofa
Degree | Minute Arcs Degree Degree | Minute Arcs Degree
60 10 86747 144 66 10 91472 118
6o | 20 86892 66 | 20 91590 1y
6o | 30 87036 143 66 | 30 91706 116
60 | 40 87178 142 66 | 40 91822 11§
6o | 50 87320 66 | 50 91936 114
61 o 87462 I41 67 o 92050 113
61 10 87603 140 67 10 92164
6r | 20 87743 139 67 | 20 92276 2
61 30 87882 67 | 30 92388 111
61 40 88020 138 67 | 40 92499 110
61 50 88158 137 67 | 50 92609 109
62 o 88295 68 o 92718
62 10 88431 136 68 10 92827 108
62 20 88566 13§ 68 20 92935 107
62 | 30 88701 134 68 | 30 93042 106
62 | 40 88835 68 | 40 93148 10§
62 | 50 88968 133 68 50 93253
63 o 89101 132 69 o 93358 104
63 10 89232 131 69 10 93462 103
63 20 89363 69 | 20 93565 102
63 | 30 89493 130 69 | 30 93667
63 | 40 89622 129 69 | 40 93769 101
63 50 89751 128 69 | 50 93870 100
64 | o 89879 70 | o 93969 99
64 10 90006 127 70 10 94068 98
64 | 20 90133 126 70 20 94167
64 | 30 90258 70 | 30 94264 97
64 | 40 90383 125 70 | 40 94361 96
64 | 50 90507 124 70 | 50 94457 95
65 | o 90631 123 7t | o 94552 94
65 10 990753 122 71 10 94646 93
65 20 90875 121 71 20 94739
65 | 30 90996 7t | 30 94832 92
65 | 40 91116 120 71 | 40 94924 91
65 | 50 91235 119 7t 50 95015 90
66 o 91354 118 72 o 95105
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Table of the Straight Lines Subtended in a Circle

page 18v

Differ- Differ-
ences ences
Half-Chords | for the Half-Chords |  for the
Subtending | Fractions Subtending | Fractions
Arcs Double ofa Arcs Double ofa
Degree | Minute Arcs Degree Degree | Minute Arcs Degree
72 | 10 95195 89 78 | 10 97875 59
72 | 20 95284 88 78 | 20 97934 58
72 | 30 95372 87 78 | 30 97992
72 | 40 95459 86 78 | 40 98050 57
72 | 50 95545 85 78 | 50 98107 56
73 | o 95630 79 | o 98163 55
73 | 10 95715 84 79 | 10 98218 54
73 | 20 95799 83 79 | 20 98272
73 | 30 95382 82 79 | 30 98325 53
73 | 40 95964 81 79 | 40 98378 52
73 | 50 96045 79 | 50 98430 st
74 o 96126 8o 80 o 98481 50
74 10 96206 79 80 10 98531 49
74 20 96285 78 8o | 20 98580
74 | 30 96363 77 8o | 30 98629 48
74 | 40 96440 8o | 40 98676 47
74 | 50 96517 76 8o | 50 98723 46
75 | o 96592 75 8r | o 98769 45
75 10 96667 74 81 10 98814 44
75 | 20 96742 73 81 | 20 98858 43
75 30 96815 72 81 30 98902 42
75 | 40 96887 8r | 40 98944
75 | so 96959 71 8r | 350 98986 41
76 o 97030 70 82 o 99027 40
76 | 10 97099 69 82 | 10 99067 39
76 20 97169 68 82 20 99106 38
76 | 30 97237 82 | 30 99144
76 | 40 97304 67 82 | 40 99182 37
76 | 50 97371 66 82 | 50 99219 36
77 | © 97437 65 83 | o 99255 35
77 10 97502 64 83 10 99290 34
77 | 20 97566 63 83 | 20 99324 33
77 | 30 97630 83 | 30 99357
77 | 40 97692 62 83 | 40 99389 32
77 | 50 97754 61 83 | 5o 99421 31
78 | o 97815 60 84 | o 99452 30
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Table of the Straight Lines Subtended in a Circle page 19r
Differ- Differ-
ences ences
Half-Chords for the Half-Chords for the
Subtending | Fractions Subtending | Fractions
Arcs Double ofa Arcs Double ofa
Degree | Minute Arcs Degree Degree | Minute Arcs Degree
84 10 99842 29 87 10 99878 14
84 20 99511 28 87 20 99892 13
84 | 30 99539 27 87 | 30 99905 12
84 | 40 99567 87 | 40 99917
84 | 50 99594 26 87 | 50 99928 Ir
85 o 99620 25 88 o 99939 10
85 | 10 99644 24 88 | 10 99949 9
85 20 99668 23 88 20 99953 3
85 30 99692 22 88 30 99966 7
85 | 40 99714 88 | 40 99973 6
8 | s0 99736 21 88 | 50 99979
86 | o 99756 20 89 | o 99985 5
86 | 10 99776 19 89 | 10 99989 4
86 | 20 99795 18 89 | 20 99993 3
86 | 30 99813 89 | 30 99996 2
86 | 40 99830 17 89 | 40 99998 I
86 | so 99847 16 89 | s0 99999 o
87 o 99863 15 90 o 100000 o
The sides and angles of plane rectilinear triangles. Chapter 13. page 19v
I —r
. . . . 1 T
If the angles of a triangle are given, the sides are given. _::_ -
I say, let there be a triangle ABC. Circum- -

scribe a circle around it, in accordance with Eu-
clid, Book IV, Problem 5. Then the arcs AB, BC,
and CA will likewise be given, according to the | 5

system in which 360° are equal to two right an-

gles. But when the arcs are given, the sides of the

triangle inscribed in the circle are also given as
chords, in the Table set forth above, in units whereof the diameter is assumed

to have 200,000.

I1.
But if an angle and two sides of a triangle are given, the remaining side and the
other angles will also be known.

For, the given sides are either equal or unequal, while the given angle is
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either right or acute or obtuse, and the given sides either Py
include or do not include the given angle.
First, in the triangle ABC let the two given sides,

AB and AC, which include the given angle A, be equal.
Then the other angles, which are at the base BC, since | % .

they are equal, are also given as halves of the remainder

when A is subtracted from two right angles. And if originally an angle at the
base is given, its equal is thereupon given; and from these, the remainder of two
right angles is given. But when the angles of a triangle are given, the sides are
given, and the base BC is given by the Table, in units whereof AB or AC as

radius has 100,000, or the diameter 200,000.

I11.
But if BAC is a right angle included by sides A\\
which are given, the same result will follow.
It is quite obvious that the squareson ABand | = / \ &
AC are equal

to the square on the base BC. Therefore BC is given in length, and so the sides
are given in relation to one another. But the segment of the circle which en-
closes the right triangle is a semicircle, whose diameter is the base BC. There-
tore, in units whereof BC has 200,000, AB and AC will be given as sides oppo-
site the remaining angles B and C. Their place in the Table will accordingly
make them known in degrees, whereof 180 are equal to two right angles. The
same result will follow if BC is given with either of the two sides which include

the right angle. This is now quite obvious, in my judgment.

II11.
Now let the given angle ABC be acute, and let it also be included by the given
sides AB and BC. From the point A drop a perpendicular to BC, extended if
necessary, according as the perpendicular falls
inside or outside the triangle. Let the perpendicu- '

lar be AD. By means of it two right triangles ABD 4 //\
and ADC are established. In ABD the angles are B — o C

given, because D is a right angle, and B is given

by hypothesis. Therefore AD and BD, as sides opposite the angles A and B, are

given by the Table in units whereof AB, as the diameter of a circle, has 200,000.
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And on the same scale on which AB was given in length, AD and BD are given
in similar units, and so also is CD, by which BC exceeds BD. In the right
triangle ADC, therefore, the sides AD and CD being given, the required side
AC and the angle ACD are likewise given by the preceding proof.

V.
The result will not be different if the angle B is obtuse. For from the point A, a
perpendicular AD, dropped on the straight line BC extended, makes a triangle
ABD, whose angles are given. For, ABD is given

as the supplementary angle of ABC, and D is a 3

right angle. Therefore BD and AD are given in

units whereof AB is 200,000. And since BA and -

BC have a given ratio to each other, therefore BC \
is given also in the same units as BD, and so is | = 7

the whole of CBD. Likewise in the right triangle
ADC, therefore, since the two sides AD and CD are given, the required AC
also is given, as well as the angle BAC, with the remainder ACB, which were

required.

VI.
Now let either one of the given sides be opposite the given angle B.

Let [this opposite side] be AC and [the other given side] AB. Then AC is
given by the Table in units whereof the diameter of the circle circumscribed
around the triangle ABC has 200,000. Moreover, in accordance with the given
ratio of AC to AB, AB is given in similar units. And by the Table the angle at
ACB is given, together with the remaining angle BAC. Through the latter, the
chord CB also is given. When this ratio is given, [the length of the sides] is

given in any units whatsoever.

VII.

If all the sides of a triangle are given, the angles are given.

In the case of the equilateral triangle, the fact -
that each of its angles is one-third of two right an-
gles is too well known to be mentioned.

Also in the case of the isosceles triangle the situ- | g d
ation is clear. For, the equal sides are to the third D
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side as halves of the diameter are to the chord subtending the arc. Through the
arc, the angle included by the equal sides is given by the Table in units whereof
a central angle of 360° is equal to four right angles. Then the other angles,
which are at the base, are also given as from two right angles.

It therefore now remains to give the proof for scalene triangles too. These
will similarly be divided into right triangles. Then let ABC be a scalene trian-
gle of given sides. On the longest side, for instance, BC, drop the perpendicular
AD. But the square of AB, which is opposite an acute angle, as we are told by
Euclid, II, 13, is less than the squares on the other two sides, the difference
being twice the product BC x CD. For, C must be an acute angle; otherwise
AB would be, contrary to the hypothesis, the longest side, as may be inferred
from Euclid, I, 17, and the next two theorems. Therefore BD and DC are given;
and in a situation to which we have already frequently returned, ABD and
ADC will be right triangles of given sides and angles. From these, the required
angles of triangle ABC are also known.

Alternatively, the next to the last theorem in Euclid, III, will demonstrate
the same result, perhaps more conveniently. Let the shortest side be BC. With
C as center, and with BC as radius, let us describe a circle which will intersect
both of the remaining sides or either one of them.

First let it intersect both, AB at the point E, and AC at D. Also extend the
line ADC to the point F in order to complete the diameter DCF. From this

construction it is clear, in accordance with

that Euclidean theorem, that the product ¥ E

FA x AD is equal "—)IIH\ \ﬁ

to the product BA x AE, since both prod- | ¢

h‘(—%ﬁx

ucts are equal to the square of the line N\
drawn tangent to the circle from A. But \x.l
the whole of AF is given, since all of its
segments are given. CF and CD, as radii,
are of course equal to BC, and AD is the
excess of CA over CD. Therefore the prod-
uct BA x AE is also given. So is AE in

length, together with the remainder BE, f

the chord subtending the arc BE. By join-
ing EC, we shall have BCE as an isosceles

triangle of given sides. Therefore angle
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EBC is given. Hence in triangle ABC the remaining angles C and A will also
be known from what precedes.

Now do not let the circle intersect AB, as in the second figure, where AB
meets the curve of the circumference. Nevertheless BE will be given. Moreo-
ver, in the isosceles triangle BCE the angle CBE is given, and so also is its
supplement ABC. By exactly the same process of reasoning as before, the re-
maining angles are given.

What has been said, containing as it does a considerable part of surveying,

may suffice for rectilinear triangles. Now let us turn to spherical triangles.

Spherical triangles. Chapter 14.

I here regard a convex triangle as the figure which is enclosed on a spherical
surface by three arcs of great circles. But the size of an angle, as well as the
difference between angles, [is measured] on an arc of the great circle which is
drawn with the point of intersection as its pole. This arc is intercepted by the
quadrants enclosing the angle. For, the arc so intercepted is to the whole cir-
cumference as the angle at the intersection is to four right angles. These, as I

said, contain 360 equal degrees.

I.
If there are three arcs of great circles of a sphere, any two of which, when joined
together, are longer than the third, clearly a spherical triangle can be formed
from them.

For, this statement about arcs is proved for angles by Euclid, XI, 23. Since
the ratio of angles and arcs is the same, and great circles pass through the center
of the sphere, evidently the three sectors of the circles, of which these are arcs,

form a solid angle at the center of the sphere. The theorem is therefore obvious.

II.
Any arc of a triangle must be less than a semicircle.

For, a semicircle does not form an angle at the center, but proceeds through
it in a straight line. On the other hand, the two remaining angles, to which arcs
belong, cannot enclose a solid angle at the center, and consequently not a spheri-
cal triangle. This was the reason, in my opinion, why Ptolemy, in expounding
this class of triangles, especially in connection with the shape of the spherical
sector, stipulates that the assumed arcs should not be greater than a semicircle

[Syntaxis, 1, 13].
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I1I.

In right spherical triangles, the ratio of the chord subtending twice the side
opposite the right angle to the chord subtending twice either one of the sides
including the right angle is equal to the ratio of the diameter of the sphere to

the chord subtending twice the angle
included, on a great circle of the sphere,
between the remaining side and the
hypotenuse.

For let there be a spherical triangle

ABC, in which C is a right angle. I say

that the ratio of the chord subtending

twice AB to the chord subtending twice BC is equal to the ratio of the diameter

of the sphere to the chord subtending twice the angle BAC on a great circle.
With A as pole, draw DE as the arc of a great circle. Complete the quad-

rants ABD and ACE. From F, the center of the sphere, draw the intersections

of the circles: FA, of ABD and ACE;

FE, of ACE and DE; FD, of ABD and DE; and also FC, of the circles AC and
BC. Then draw BG perpendicular to FA, BI to FC, and DK to FE. Join GI.
If a circle intersects another circle while passing through its poles, it inter-
sects it at right angles. Therefore AED is a right angle. So is ACB by hypoth-
esis. Hence both planes EDF and BCF are perpendicular to AEF. In this last-
mentioned plane at point K draw a straight line perpendicular to the intersec-
tion FKE. Then this perpendicular will form with KD another right angle, in
accordance with the definition of planes perpendicular to each other. Conse-
quently KD is perpendicular also to AEF, according to Euclid, XI, 4. In the
same way Bl is drawn perpendicular to the same plane, and therefore DK and
BI are parallel to each other, according to Euclid, XI, 6. Likewise GB is parallel
to FD, because FGB and GFD are right angles. According to Euclid’s E/e-
ments, X1, 10, angle FDK will be equal to GBI. But FKD is a right angle, and so
is GIB according to the definition of a perpendicular line. The sides of similar
triangles being proportional, DF is to BG as DK is to BI. But BI is half of the
chord subtending twice the arc CB, since Bl is perpendicular to the radius CF.
In the same way BG is half of the chord subtending twice the side BA; DK is
half of the chord subtending twice DE, or twice angle A; and DF is half of the
diameter of the sphere. Clearly, therefore, the ratio of the chord subtending
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twice AB to the chord subtending twice BC is equal to the ratio of the diam-
eter to the chord subtending twice the angle A, or twice the intercepted arc
DE. The demonstration of this Theorem will prove to be useful.

II11.
In any triangle having a right angle, if another angle and any side are given, the

remaining angle and the remaining sides will also

be given. '“i‘-!:‘
For let the triangle ABC have angle A right, 5
and either of the other angles, for instance, B, 5
also given. But with regard to the given side, I
make a threefold division. For either it is adja- ¥ -

cent to the given angles, like AB; or only to the
right angle, like AC; or it is opposite the right angle, like BC.
Then first let AB be the given side. With C as pole, draw DE as the arc of

a great circle.

Complete the quadrants CAD and CBE. Produce AB and DE until they in-
tersect at point F. Then F in turn will be the pole of CAD, since A and D are
right angles. If great circles on a sphere intersect each other at right angles, they

bisect each other, and pass through each other’s
poles. Therefore ABF and DEF are quadrants. o
Since AB is given, BF, the remainder of the quad- y \
rant, is also given, and angle EBF is equal to its

vertical angle ABC, which was given. But, ac-

cording to the preceding Theorem, the ratio of

the chord subtending twice BF to the chord sub-

tending twice EF is equal to the ratio of the diameter of the sphere to the chord
subtending twice the angle EBF. But three of these are given: the diameter of
the sphere, twice BF, and twice the angle EBF, or their halves. Therefore, ac-
cording to Euclid, VI, 15, half of the chord subtending twice EF is also given.
By the Table, the arc EF is given. So is DE, the remainder of the quadrant, or
the required angle C.

In the same way, in turn, for the chords subtending twice the arcs, DE is to
AB as EBC is to CB. But three are already given: DE, AB, and CBE as a
quadrant. Therefore the fourth, the chord subtending twice CB, is also given,
and so is the required side CB. And for the chords subtending twice the arcs,
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CB is to CA as BF is to EF. For, both of these ratios are equal to the ratio of the
diameter of the sphere to the chord subtending twice the angle CBA; and ra-
tios equal to the same ratio are equal to each other. Therefore, since the three
members BE, EF, and CB are given, the fourth member CA is given, and CA is
the third side of the triangle ABC.

Now, let AC be the side assumed as given, and let it be required to find
sides AB and BC as well as the remaining angle C. Again, if we invert the
argument, the ratio of the chord subtending twice CA to the chord subtending
twice CB will be equal to the ratio of the chord subtending twice the angle
ABC to the diameter. From this, the side CB is given, as well as AD and BE as
remainders of the quadrants. Thus we shall again have the ratio of the chord
subtending twice AD to the chord subtending twice BE equal to the ratio of
the chord subtending twice ABE, and that is the diameter, to the chord sub-
tending twice BF. Therefore the arc BF is given, and its remainder is the side
AB. By a process of reasoning similar to the preceding, from the chords sub-
tending twice BC, AB, and FBE, the chord subtending twice DE, or the re-
maining angle C, is given.

Furthermore, if BC is assumed, once more, as before, AC as well as the

remainders AD and BE will be given. From them, through the subtending

straight lines and the diameter, as has often been explained, the arc BF and the
remaining side AB are given. Then, according to the previous Theorem, through
BC, AB, and CBE, as given, the arc ED is obtained, that is to say, the remain-
ing angle C, which we were looking for.

And thus once more in triangle ABC, two angles A and B being given, of
which A is a right angle, and one of the three sides being given, the third angle

is given together with the two remaining sides. Q.E.D.

V.
If the angles of a triangle are given, one of them being a right angle, the sides
are given.

Keep the previous diagram. In it, because angle C is given, arc DE is given,
and so is EF, as the remainder of the quadrant. BEF is a right angle, because
BE is drawn from the pole of DEF. EBF is the vertical angle of a given angle.
Therefore triangle BEF, having a right angle E, and another given angle B, and
a given side EF; has its sides and angles given, in accordance with the preceding

Theorem. Therefore BF is given, and so is AB, the remainder of the quadrant.
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Likewise in the triangle ABC, the remaining sides AC and BC are shown, by

what precedes, to be given.

VI.
If on the same sphere two triangles each have a right angle and another corre-

sponding angle and a corresponding side equal, whether that side be adjacent

to the equal angles or opposite either of the equal

angles, the remaining corresponding sides will

also be equal, and so will the remaining angle.
Let there be a hemisphere ABC. On it take

two triangles ABD and CEF. Let A and C be
right angles. Furthermore let angle ADB be equal

to CEF, and let one side be equal to one side. First

let the equal side be adjacent to the equal angles,

that is, let AD = CE. I say that also side AB is equal to side CF, BD to EF, and
the remaining angle ABD to the remaining angle CFE. For with their poles in B
and F, draw GHI and IKL as quadrants of great circles. Complete ADI and CEL

These must intersect each other at the hemisphere’s pole in the point I,

since A and C are right angles, and GHI and CEI are drawn through the

poles of the circle ABC. Therefore, since AD and CE are assumed to be
equal sides, the remaining arcs DI and IE will be equal, and so will IDH and

IEK as vertical angles of angles assumed equal.
H and K are right angles. Ratios equal to the
same ratio are equal to each other. The ratio of
the chord subtending twice ID to the chord sub-
tending twice HI will be equal to the ratio of
the chord subtending twice EI to the chord sub-

tending twice IK. For, each of these ratios, ac-

cording to Theorem III, above, is equal to the

ratio of the diameter of the sphere to the chord subtending twice the angle
IDH, or the equal chord subtending twice IEK. The chord subtending twice
the arc DI is equal to the chord subtending twice IE. Hence, according to
Euclid’s Elements, V, 14, also in the case of twice IK and HI the chords will be
equal. In equal circles, equal straight lines cut off equal arcs, and fractions

multiplied by the same factor preserve the same ratio. Therefore, as simple

arcs IH and IK will be equal. So will GH and KL, the remainders of the
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quadrants. Hence angles B and F are clearly equal. Therefore the ratios of the
chord subtending twice AD to the chord subtending twice BD, and of the
chord subtending twice CE to the chord subtending twice BD are equal to
the ratio of the chord subtending twice EC to the chord subtending twice
EF. For, both of these ratios are equal to the ratio of the chord subtending
twice HG, or its equal KL, to the chord subtending twice BDH, that is, the
diameter, according to the converse of Theorem III. AD is equal to CE. There-
tore, according to Euclid’s Elements, V, 14, BD is equal to EF, on account of
the straight lines subtending twice these arcs.

With BD and EF equal, I shall prove in the same way that the remaining
sides and angles are equal. And if AB and CF are in turn assumed to be the

equal sides, the same conclusions will follow from the equality of the ratios.

VIL

The same conclusion will now be proved also if there is no right angle, provided

that the side adjacent to the equal angles is equal to the corresponding side.
Thus in the two triangles ABD and CEF, let any two angles B and D be

equal to the two corresponding angles E and F. Also let side BD, which is

adjacent to the equal angles,

be equal to side EF. I say that again the triangles have their sides and angles
equal.

For, once more, with B and F as poles, draw GH and KL as arcs of great
circles. Let AD and GH, when extended, intersect each other at N, while EC
and LK, when similarly extended, intersect each other at M. Then the two trian-
gles HDN and EKM have angles HDN and KEM equal, as vertical angles of
angles assumed to be equal. H and K are right angles because they pass through
the poles. Moreover, sides DH and EK are equal.

B
Therefore the triangles have their angles and sides 3
£1 _f f
equal, in accordance with the preceding Theorem. /8
And once again, GH and KL are equal arcs, al ; \»._ o s

since angles B and F were assumed to be equal. =
Therefore the whole of GHN is equal to the A

whole of MKL, in accordance with the axiom S

about equals added to equals. Consequently here
too the two triangles AGN and MCL have one side GN equal to one side ML,
angle ANG equal to CML, and right angles G and L. For this reason these
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triangles also will have their sides and angles equal. When equals are subtracted
from equals, the remainders will be equal, AD to CE, AB to CF, and angle
BAD to the remaining angle ECF. q.E.D.

VIII.

Furthermore, if two triangles have two sides equal to the two corresponding
sides, as well as an angle equal to an angle, whether it be the angle included by
the equal sides, or an angle at the base, the base will also be equal to the base,
and the remaining angles to the remaining angles.

As in the preceding diagram, let side AB be equal to side CF, and AD to
CE. First, let angle A, included by the equal sides, be equal to angle C. I say
that also the base BD is equal to the base EF, angle B to F, and the remaining
angle BDA to the remaining angle CEF. For we shall have two triangles, AGN
and CLM, in which G and L are right angles; GAN and MCL are equal as
supplementary angles of BAD and ECEF, which are equal; and GA is equal to
LC. Therefore the triangles have their corresponding angles and sides equal.
Hence, AD and CE being equal, the remainders DN and ME are also equal.
But it has already been shown that angle DNH is equal to angle EMK. H and
K being right angles, the two triangles DHN and EMK also

will have their corresponding angles and sides equal. Hence, as remainders BD
will also be equal to EF and GH to KL. Their angles B and F are equal, and so
are the remaining angles ADB and FEC.

But instead of the sides AD and EC, let the bases BD and EF be assumed
to be equal. With these bases opposite equal angles, but everything else re-

maining as before, the proof will proceed in the

same way. For, GAN and MCL are equal, as sup- > /fra e
plements of equal angles. G and L are right an- ?""““- ;'f"i \
gles. AG is equal to CL. Hence, in the same way | . _’_. _."' :2": o S £
as before, we shall have two triangles AGN and \ S ts _,-'I: 7
MCL with their corresponding angles and sides \ /':H' <
equal. The same is true also for their sub-trian- S

gles, DHN and MEK. For, H and K are right an-
gles; DNH is equal to KME; DH and EK are equal sides, as remainders of
quadrants. From these equalities the same conclusions follow as those which I

enunciated.
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IX.
On a sphere too, the angles at the base of an isosceles triangle are equal to each
other.

Let ABC be a triangle with AB and AC, two of its sides, equal. I say that
ABC and ACB, the angles at the base, are also equal.

From the vertex A, draw a great circle intersecting the

1

base at right angles, that is, passing through the poles.
Let the great circle be AD. In the two triangles ABD

and ADC, then, side BA is equal to side AC; AD is com-
mon to both triangles; and the angles at D are right an-

T

gles. It is therefore clear that, in accordance with the preceding Theorem, an-

gles ABC and ACB are equal. Q.E.D.

Corollary.

Accordingly it follows that the arc drawn through the vertex of an isosceles
triangle at right angles to the base will bisect the base and, at the same time, the
angle included by the equal sides, and conversely, as is clear from this Theorem

and the preceding one.

X.
Any two triangles having their corresponding sides equal will also have their
corresponding angles equal, each to each.

For in both cases the three segments of great circles form pyramids, whose
vertices are at the center of the sphere. But their bases are the plane triangles
bounded by the straight lines subtending the arcs of the convex triangles. These

pyramids are similar and

equal, according to the definition of equal and similar solid figures. When two
figures are similar, however, the rule is that, taken in any order, their corre-
sponding angles are equal. Therefore these triangles will have their corresponding
angles equal. In particular, those who define similar figures more generally want
them to be whatever figures have similar configurations in which their corre-
sponding angles are equal. From these considerations it is clear, I think, that on
a sphere triangles having their corresponding sides equal are similar, as in the

case of plane triangles.
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XI.
Every triangle having two sides and an angle given becomes a triangle of given
angles and sides.

For if the given sides are equal, the angles at the base will be equal. Drawing
an arc from the vertex at right angles to the base will readily make clear what is
required, in accordance with the Corollary of Theorem IX.

But the given sides may be unequal, as in triangle ABC. Let its angle A be
given, together with two sides. These either include or do not include the given
angle.

First, let it be included by the given sides, AB and AC. With C as pole,
draw DEF as the arc of a great circle. Complete the quadrants CAD and CBE.
Produce AB to intersect DE at point F. Thus also in the triangle ADEF, the side

AD is given as the remainder when AC is subtracted
from the quadrant. Moreover, angle BAD is given as
the remainder when CAB is subtracted from two right
angles. For, the ratio of the angles and their sizes are

the same as those which result from the intersection |%2

of straight lines and planes. D is a right angle. There- |
fore, in accordance with Theorem IV, ADF will be a
triangle of given angles and sides. Again, in triangle BEF, angle F has been

found; E is right, because its sides pass through the poles; and side BF is also
known as the quantity by which the whole of ABF exceeds AB. In accordance
with the same theorem, therefore, BEF also will be a triangle of given angles
and sides. Hence, through BE, BC is given as the remainder of the quadrant
and a required side. Through EF, the remainder of the whole of DEF is given
as DE, and this is the angle C. Through the angle EBF its vertical angle ABC
is given, and this was required.

But if, instead of AB, CB, the side opposite the given angle, is assumed, the
same result will follow. For, AD and BE are given as the remainders of the
quadrants. By the same argument the two triangles ADF and BEF, as before,
have their angles and sides given. From them, the sides and angles of the sub-

ject triangle ABC are given, as was proposed.

XII.

Furthermore, if any two angles and a side are given, the same results will follow.
For, keeping the construction in the preceding diagram, in triangle ABC
let the two angles ACB and BAC be given, as well as the side AC, which is
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adjacent to both angles. If, in addition, either of the given angles were a right

angle, everything else could be deduced by reasoning in accordance with Theo-

rem IV, above. However, I want this to be a different -

case, in which neither of the given angles is a right = /,/}
angle. Then AD will be the remainder of the quad- g o o

rant CADj angle BAD is the remainder when BAC is d

!
subtracted from two right angles; and D is a right an-

gle. Therefore the angles and sides of triangle AFD \\}L—. —F

are given, in accordance with Theorem IV, above. But

since angle C is given, the arc DE is given, and so is the remainder EF. BEF is
a right angle, and F is an angle common to both triangles. In the same way, in
accordance with Theorem IV, above, BE and FB are given, and from them the
required remaining sides AB and BC will be known.

On the other hand, one of the given angles may be opposite the given side.
For example, if angle ABC is given instead of ACB, while everything else re-
mains unchanged, the same proof as before will make known the whole of
ADF as a triangle of given angles and sides. The same is true for the sub-
triangle BEF. For, angle F is common to both; EBF is the vertical angle of a
given angle; and E is a right angle. Therefore, as is proved above, all its sides are
also given. From them, finally, the same conclusions follow as those which I
enunciated. For, all these properties are always interconnected by an invariant

mutual relationship, as befits the form of a sphere.

XIII.

Finally, if all the sides of a triangle are given, the angles are given.

Let all the sides of triangle ABC be given. I say

that all the angles also are found. For, the triangle
will have sides which are either equal or not equal.
Then, first, let AB and AC be equal. Obviously, the
halves of the chords subtending twice AB and AC
will also be equal. Let these half-chords be BE and
CE. They will intersect each other in the point E,

because they are equidistant from the center of the

sphere on DE, the intersection of their circles. This
is clear from Euclid, III,
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Definition 4, and its converse. But according to Euclid, I1I, 3, DEB is a right
angle in plane ABD, and so is DEC in plane ACD. Therefore BEC is the
angle of inclination of those planes, according to Euclid, XI, Definition 4. We
shall find angle BEC in the following way. For, it will be subtended by the
straight line BC. Then we shall have the rectilinear triangle BEC. Its sides will
be given through their arcs, which are given. Also the angles of BEC will be
given, and we shall have the required angle BEC, that is, the spherical angle
BAC, and the remaining angles, through what precedes.

But the triangle may be scalene, as in the second diagram. Obviously, the
halves of the chords subtending twice the sides will not intersect one another.
For let arc AC be greater than AB, and let CF be
half of the chord subtending twice AC. Then CF s
will pass below. But if the arc is smaller, the half- // / |
chord will be higher, according as these lines hap- | /=" Hﬁ;.',bx
£ / |

oV

N
Clearly, then, EFG is a right angle, being of course o

pen to be nearer to or farther away from the center,

in accordance with Euclid, III, 15. Then let FG be
drawn parallel to BE. Let FG intersect BD, the
intersection of the circles, in the point G. Join CG.

equal to AEB, and EFC is also a right angle, since

CF is half of the chord subtending twice AC. Then CFG will be the angle of
intersection of the circles AB and AC. Therefore we obtain CFG also. For DF
is to FG as DE is to EB, since DFG and DEB are similar triangles. Hence FG
is given in the same units as those in which FC is also given. But the same ratio
holds also for DG to DB. DG also will be given in units whereof DC is 100,000.
What is more, angle GDC is given through arc BC. Therefore, in accordance
with Theorem II on Plane Triangles, side GC is given in the same units as the
remaining sides of the plane triangle GFC. Consequently, in accordance with
the last Theorem on Plane Triangles, we shall have angle GFC, that is, the
required spherical angle BAC, and then we shall obtain the remaining angles,

in accordance with Theorem XI on Spherical Triangles.

XIIII.
If a given arc of a circle is divided anywhere so that the sum of both segments is
less than a semicircle, the ratio of half the chord subtending twice one segment

to half the chord subtending twice the other
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segment being given, the arcs of the segments will also be given.

For let arc ABC be given, about D as center. Let ABC be divided at ran-
dom in the point B, yet in such a way that the segments are less than a semicir-
cle. Let the ratio of half the chord subtending twice AB to half of the chord
subtending twice BC be given in some unit of length. I say that the arcs AB
and BC are also given.

For, draw the straight line AC, which will be intersected by the diameter at
the point E. Now from the end-points A and C, drop perpendiculars to the
diameter. Let these perpendiculars be AF and CG, which must be halves of the
chords subtending twice AB and BC. Then in the right

triangles AEF and CEG, the vertical angles at E are / te) 5\
o e
equal. Therefore the triangles have their corresponding Sl \

angles equal. Being similar triangles, they have their sides =
opposite the equal angles proportional: as AF is to CG, /f
AE is to EC. Hence we shall have AE and EC in the -

same units as those in which AF or GC was given. From

AE and EC, the whole of AEC will be given in the same units. But AEC, as
the chord subtending the arc ABC, is given in those units in which the radius
DEB is given. In the same units, AK, as half of AC, and the remainder EK, are
also given. Join DA and DK, which will also be given in the same units as DB.
For, DK is half of the chord subtending the segment remaining when ABC is
subtracted from a semicircle. This remaining segment is included within angle
DAK. Therefore angle ADK is given as including half of the arc ABC. But in
the triangle EDK, since two sides are given, and EKD is a right angle, EDK
will also be given. Hence the whole angle EDA will be given. It includes the arc
AB, from which the remainder CB will also be obtained. This is what we wanted

to prove.

XV.

If all the angles of a triangle are given, even though none of them is a right

angle, all the sides are given.

Let there be the triangle ABC, with all of its angles :
given, but none of them a right angle. I say that all of its G
sides are also given. For, from any of the angles, for in- J"I,-

stance A, through the poles of BC draw the arc AD. This k
[
™ Bk

will intersect BC at right angles. AD will fall inside the
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obtuse, and the other acute. Should this be the case, the perpendicular would

have to be drawn from the obtuse angle to the base. Complete the quadrants
BAF, CAG, and DAE. Draw the arcs EF and EG with their poles in B and C.

Therefore F and G will also be right angles. Then in the right triangles, the
ratio of half the chord subtending twice AE to half the chord subtending twice
EF will be equal to the ratio of half the diameter of the sphere to half the chord
subtending double the angle EAF; similarly in triangle AEG, with its right
angle at G, the ratio of half the chord subtending twice AE to half of the chord
subtending twice EG is equal to the ratio of half the diameter of the sphere to
half of the chord subtending double the angle EAG. Then since these ratios are
equal, the ratio of half the chord subtending twice EF to half of the chord
subtending twice EG will be equal to the ratio of half the chord subtending
double the angle EAF to half of the chord subtending double the angle EAG.
FE and EG are given arcs, being the remainders when angles B and C are
subtracted from right angles. From FE and EG, then, we shall obtain the ratio
of angles EAF and EAG, that is, of their vertical angles, BAD and CAD. But
the whole of BAC is given. Therefore, in accordance with the preceding Theo-
rem, angles BAD and CAD will also be given. Then, in accordance with Theo-
rem V, we shall obtain sides AB, BD, AC, CD, and the whole of BC.

For the present let this digression suffice for triangles, so far as they are
necessary for our purpose. If they had to be discussed more fully, a special vol-

ume would have been required.

End of the first book.
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Nicolaus Copernicus

Revolutions
Book Two

I have given a general account of the earth’s three motions, by which I prom-
ised to explain all the phenomena of the heavenly bodies [I, 1z]. I shall do so
next, to the best of my ability, by analyzing and investigating them, one by one.
I shall begin, however, with the most familiar revolution of all, the period of a
day and night. This, as I said [1, 4], is called nuchthemeron by the Greeks. I have
taken it as belonging particularly and directly to the earth’s globe, since the
month, year, and other intervals of time bearing many names proceed from this
rotation, as number does from unity, time being the measure of motion. Hence
with regard to the inequality of days and nights, the rising and setting of the
sun and of the degrees of the zodiac and its signs, and that sort of consequence
of this rotation, I shall make some few remarks, especially because many have
written about these topics quite fully, yet in harmony and agreement with my
views. It makes no difference that they base their explanations on a motionless
earth and rotating universe, while I take the opposite position and accompany
them to the same goal. For, mutually interrelated phenomena, it so happens,
show a reversible agreement. Yet I shall omit nothing essential. But let nobody
be surprised if I still refer simply to the rising and setting of the sun and stars,
and similar phenomena. On the contrary, it will be recognized that I use the
customary terminology, which can be accepted by everybody. Yet I always bear

in mind that

For us who are borne by the earth, the sun and the moon pass by,

And the stars return on their rounds, and again they drop out of sight.

The circles and their names. Chapter 1.

The equator, as I said [I, 11], is the largest of the parallels of latitude described
around the poles of the daily rotation of the earth’s globe. The ecliptic, on the
other hand,

is a circle passing through the middle of the signs of the zodiac, and below the
ecliptic the center of the earth circles in an annual revolution. But the ecliptic

meets the equator obliquely, in agreement with the inclination of the earth’s
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axis to the ecliptic. Hence, as a result of the earth’s daily rotation, on either side
of the equator a circle is described tangent to the ecliptic as the outermost limit
of its obliquity. These two circles are called the “tropics,” because in them seem
to occur the sun’s tropes or reversals in direction, that is to say, in winter and
summer. Hence the northern one is usually called the “summer solstice,” and
the other one in the south, the “winter solstice,” as was explained above in the
general account of the earth’s revolutions [I, 11].

Next comes the “horizon,” as it is called, which the Romans term the “bound-
ary,” since it separates the part of the universe visible to us from the part which
is hidden. [All the bodies that rise] seem to rise at the horizon, [and] all the
bodies that set [seem to set at the horizon]. It has its center on the surface of
the earth, and its pole at our zenith. But the earth is incommensurable with the
immensity of the heavens. Even the entire space intervening, according to my
conception, between the sun and the moon cannot be classed with the vastness
of the heavens. Hence the horizon seems to bisect the heavens like a circle
passing through the center of the universe, as I showed earlier [I, 6]. But the
horizon meets the equator obliquely. Hence the horizon too is tangent, on
either side of the equator, to a pair of parallels of latitude: in the north, [the
circle limiting the stars which are] always visible, and in the south, those which
are always hidden. The former is called the “arctic,” the latter the “antarctic,” by
Proclus and most of the Greeks. The arctic and antarctic circles become larger
or smaller in proportion to the obliquity of the horizon or the altitude of the
pole of the equator.

There remains the meridian, which passes through the poles of the horizon
and also through the poles of the equator. Therefore the meridian is perpen-
dicular to both of these circles. When the sun reaches the meridian, it indicates
noon and midnight. But these two circles, I mean the horizon and the merid-
ian, which have their centers on the surface of the earth, depend absolutely on
the motion of the earth and our sight, wherever it may be. For everywhere the
eye acts as the center of the sphere of all the bodies visible in every direction
around it. Therefore, as is clearly proved by Eratosthenes, Posidonius, and the
other writers on cosmography and the earth’s size, all the circles assumed on
the earth are also the basis of their counterparts in the heavens and of similar
circles. These too are circles having special names, while others may be desig-

nated in countless ways.
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The obliquity of the ecliptic, the distance between the tropics, and the
method of determining these quantities. Chapter 2.

The ecliptic, then, crosses obliquely between the tropics and the equator. Hence
it is now necessary, I believe, to investigate the distance between the tropics
and, in that connection, the size of the angle at which the equator and ecliptic
intersect each other. This must of course be perceived by the senses and with
the aid of instruments by which this very valuable result is obtained. Hence
make a square out of wood, or preferably out of some more rigid material, [such
as] stone or metal, lest perhaps the wood, yielding to a shift in the air, be able to
mislead the observer. Let a surface of the square be perfectly smooth, and long
enough for the subdivisions which have to be made, so that it would be five or
six feet. For in proportion to its size, and with one of the corners as center, a
quadrant of a circle is drawn. It is divided into 9o equal degrees. These are
subdivided in like manner into 60 minutes, or whatever subdivisions the de-
grees can accommodate. Then a precisely lathed cylindrical pin is attached to
the center. Placed perpendicular to the surface, the pin protrudes a little, per-
haps as much as a finger’s breadth or less.

After this instrument has been constructed in this way, it is useful to trace the
meridian on a floor laid in the horizontal plane and leveled as carefully as possible
by means of a hydroscope or water level, lest it sag in any direction. Now on this
floor draw a circle, and at its center erect a pointer. Observing where its shadow
falls on the circumference of the circle at any time before noon, we shall mark
that point. We shall make a similar observation in the afternoon, and bisect the
arc of the circle lying between the two points already marked. By this method a
straight line drawn from the center through the point of bisection will certainly
indicate south and north for us without any error.

Then on this line as its base, the instrument’s plane surface is erected and
attached perpendicularly, with its center turned southward. A plumb line dropped
from the center meets the meridian line at right angles. The result of this proce-
dure is of course that the surface of the instrument contains the meridian.

Thereafter, on the days of the summer and winter solstices, the sun’s shadow

at noon must be

observed as it is cast at the center by that pin or cylinder. Anything may be used
on the aforesaid arc of the quadrant to fix the place of the shadow with greater
certainty. We shall note the midpoint of the shadow as accurately as possible in

degrees and minutes. For if we do this, the arc found marked oft between the
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two shadows, summer and winter, will show us the distance between the trop-
ics and the entire obliquity of the ecliptic. By taking half of this, we shall have
the distance of the tropics from the equator, while the size of the angle of
inclination of the equator to the ecliptic will become clear.

Now this interval between the aforementioned limits, north and south, is
determined by Ptolemy, in degrees whereof the circle is 360° as 47° 42" 40"
[Syntaxis,1,12]. He also finds that before his time the observations of Hipparchus
and Eratosthenes were in agreement. This determination is equivalent to 1
units, whereof the entire circle is 83. Half of this interval, which is 23° 51" 207,
established the distance of the tropics from the equator, in degrees whereof the
circle is 360° and the angle of intersection with the ecliptic. Therefore Ptolemy
thought that this was constant, and would always remain so. But from that
time these values are found to have decreased continuously down to our own
time. For, certain of our contemporaries and I have now discovered that the
distance between the tropics is not more than approximately 46° 58’, and the
angle of intersection not more than 23°29". Hence it is now quite clear that the
obliquity of the ecliptic also is variable. I shall say more about this subject be-
low [III, 10], where I shall also show by a quite probable conjecture that the

obliquity never was more than 23° 52’, and never will be less than 23° 28"

The arcs and angles of the intersections of the equator, ecliptic, and merid-
ian; the derivation of the declination and right ascension from these arcs and
angles, and the computation of them. Chapter 3.

Just as I said [II, 1] that the parts of the universe rise and set at the horizon, so

I [now] say that the heavens are bisected at the meridian.

This also traverses both the ecliptic and the equator in a period of 24 hours. It
divides them, by cutting off arcs starting from their vernal or autumnal inter-

section. It in turn is divided by their interception of an arc [of the meridian].

Since they are all great circles, they form a spheri-
cal triangle. This is a right triangle, because there
is a right angle where the meridian crosses the equa-
tor, through whose poles [the meridian passes, ] by

definition. The arc of the meridian in this triangle,

or an arc so intercepted on any circle passing

through the poles of the equator, is called the “dec-

lination” of the segment of the ecliptic. But the corresponding arc of the equa-
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tor, which rises together with its associated arc on the ecliptic, is called the
“right ascension.”

All of this is easily shown in a convex triangle. For, let ABCD be the circle,
generally called the “colure,” which passes through the poles of both the equa-
tor and the ecliptic. Let half of the ecliptic be AEC; half of the equator, BED;
the vernal equinox, E; the summer solstice, A; and the winter solstice, C. As-
sume that F is the pole of the daily rotation, and that on the ecliptic EG is an
arc of, say, 30°. Through its end, draw the quadrant FGH. Then in the triangle
EGH, obviously side EG is given as 30°. Angle GEH is also given; at its mini-
mum, in degrees whereof 360° = 4 right angles, it will be 23° 28’, in agreement
with the minimum declination AB. GHE is a right angle. Therefore, in ac-
cordance with Theorem IV on Spherical Triangles, EGH will be a triangle of
given angles and sides. The ratio of the chord subtending twice EG to the
chord subtending twice GH, as has of course been shown [Theorem III on
Spherical Triangles], is equal to the ratio of the chord subtending twice AGE,
or of the diameter of the sphere, to the chord subtending twice AB. Their half-
chords are similarly related. Half of the chord subtending twice AGE is 100,000
as a radius; in the same units, the halves of the chords subtending twice AB and
EG are 39,822 and 50,000. If four numbers are proportional, the product of the
means is equal to the product of the extremes. Hence we shall have half of the
chord subtending twice the arc GH as 19,911 units. This half-chord in the Table
gives the arc GH as 11° 29, the declination corresponding to the segment EG.
Therefore in the triangle AFG too, sides FG and AG, as remainders of quad-
rants, are given as 78° 31" and 60°, and FAG is a right angle. In the same way, the
chords subtending twice FG, AG, FGH, and BH,

or their half-chords will be proportional. Now, since three of these are given,

the fourth, BH, will also be given as 62° 6. This is the right ascension as taken

from the summer solstice, or from the vernal equi-

nox it will be HE, of 27° 54". Similarly from the /}@
given sides FG of 78°31, AF of 66°32,and aquad- | & £ e
rant, we shall have angle AGF of approximately L‘“mi{\—\j?/)
69°23%2". Its vertical angle HGE is equal. We shall J =

follow this example in all the other cases too.

However, we must not disregard the fact that, at
the points where the ecliptic is tangent to the tropics, the meridian intersects the

ecliptic at right angles, since at those times the meridian passes through the poles
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of the ecliptic, as I said. But at the equinoctial points the meridian makes an
angle which is as much smaller than a right angle as the ecliptic deviates from a
right angle [in intersecting with the equator], so that now [the angle between the
meridian and the ecliptic] is 66° 32". It should also be noticed that equal arcs of

the ecliptic, as measured from the equinoctial or solsti-

tial points, are accompanied by equal angles and sides r

of the triangles. Thus let us draw ABC as an arc of the

equator, and the ecliptic DBE, intersecting each other

in B. Let this be an equinoctial point. Let us take FB A B v

and BG as equal arcs. Through K and H, the poles of

the daily rotation, draw two quadrants, KFL. and HGM. Then there will be two
triangles, FLLB and BMG. Their sides BF and BG are equal; at B there are verti-
cal angles; and at L and M, right angles. Therefore, in accordance with Theorem
VI on Spherical Triangles, the sides and angles of these triangles are equal. Thus
the declinations FL. and MG, as well as the right ascensions LB and BM, are
equal, and the remaining angle F is equal to the remaining angle G.

In the same way, the situation will be clear when the equal arcs are meas-
ured from a solstitial point. Thus let AB and BC be equal arcs to either side of
B, where the tropic is tangent to [the ecliptic]. For, draw the quadrants DA and
DC from D, the pole of the equator, [and join DB]. In like manner there will
be two triangles, ABD and DBC. Their bases AB and BC are equal; BD is a
side common to both; and there are right angles at B. In accordance with Theo-
rem VIII on Spherical Triangles, these triangles will be shown to have their
sides and angles equal. Hence it becomes clear that when these angles and arcs

are tabulated for a single quadrant on the ecliptic,

they will fit the remaining quadrants of the entire circle.

I shall adduce an example of these relationships in the following descrip-
tion of the Tables. In the first column will be entered the degrees of the ecliptic;
in the next place, the declinations corresponding to those degrees; and in the
third place, the minutes by which the declinations occurring at the maximum
obliquity of the ecliptic differ from, and exceed, these partial declinations; the
greatest of these differences is 24". I shall proceed in the same way in the Tables
of [Right Ascensions and Meridian] Angles. For when the obliquity of the
ecliptic varies, everything which accompanies it must vary. But in right ascen-
sion the variation is found to be extremely small, since it does not exceed Y10 of

a “time,” and in the course of an hour amounts to only %100. For, the ancients use
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the term “times” for the degrees of the equator which rise together with the
degrees of the ecliptic. Both of these circles have 360 units, as I have often said
[e.g., I, 12]. In order to distinguish between them, however, many have called
the ecliptic’s units “degrees,” but the equator’s “times” a nomenclature which I
too will follow hereafter. Although this variation is so tiny that it can properly
be neglected, I did not mind adding it too. From these variations, then, the
same results will be clear in any other obliquity of the ecliptic if, in proportion
to the excess of the ecliptic’s maximum obliquity over the minimum, to each
entry the corresponding fractions are applied. Thus, for example, with the ob-
liquity at 23° 34, if I wish to know how great a declination belongs to 30° of the
ecliptic measured from the equinox, in the Table I find 11° 29°, and under the
differences 11’, which would be added as a block when the obliquity of the
ecliptic is at its maximum. This was, as I said, 23° 52". But in the present in-
stance it is assumed to be 23° 34', which is greater than the minimum by 6.
These 6" are one-fourth of the 24" by which the maximum obliquity exceeds
[the minimum]. The fraction of 11" in a similar ratio is about 3. When I add
these 3" to 11° 29, I shall have 11° 32" as the declination at that time of 30° of the
ecliptic as measured from the equinoctial point. In [meridian] angles and right
ascensions we may proceed in the same way, except that in the latter case we
must always add the differences, and in the former case always subtract them,

in order to have everything come out more accurate in relation to time.

74 Nicolaus Copernicus. De Revolutionibus Orbium Ceelestium, Libri VI. Nuremberg, 1543. THE WARNOCK LIBRARY




Table of Declinations [of the Degrees of the Ecliptic]

Dif- Dif- Dif-
Ecli-| Decli- | fer- Ecli-| Decli- | fer- Ecli-| Decli- | fer-
ptic | nation | ence ptic | nation | ence ptic | nation | ence
De- | De- |Min-|Min- De- | De- |Min-|Min- De- | De- [Min-|Min-
gree | gree | ute | ute gree | gree | ute | ute gree | gree | ute | ute
I o |24 ] o 31 | 1 | 50 | 1I 61 | 20 | 23 | 20
2 o | 48 I 32 | 12 | I | 12 62 | 20 | 35 | 21
3 I 12 I 33 | 12 | 32 | 12 63 | 20 | 47 | 21
4 1 |36 | 2 34 | 12 | 52 | 13 64 | 20 | 58 | 21
5 2 o 2 35 | 13 | 12 | 13 65 | 21 9 21
6 2 | 23 2 36 | 13 | 32 | 14 66 | 21 | 20 | 22
702 |43 37 | B |52 | 14 67 | 21 | 30 | 22
8 3 Im | 3 38 | 14 | 12 | 14 68 | 21 | 40 | 22
9 3135 4 39 | 4| 3t | 14 69 | 21 | 49 | 22
10 3 58 4 40 | 14 | 50 | 14 70 | 21 | 58 | 22
m | o4 | 22| 4 41 | 15 9 | 15 71 | 22 | 7 | 22
2| 4 | 45 | 4 42 | 15 | 27 | 15 72 | 22 | 15 | 23
13 5 9 5 43 | 15 | 46 | 16 73 | 22 | 23 | 23
415|325 44 | 16 | 4 | 16 74 | 22 | 30 | 23
15 5 55 5 45 | 16 | 22 | 16 75 | 22 | 37 | 23
16 | 6 |19 | 6 46 | 16 | 39 | 17 76 | 22 | 44 | 23
17 | 6 | 41| 6 47 | 16 | 56 | 17 77 | 22 | 50 | 23
18 7 4 7 48 |17 | 13|17 78 | 22 | 55 | 23
19 | 7 |27 | 7 49 | 17 | 30 | 18 79 | 23 1 | 24
20 7 | 49 8 50 | 17 | 46 | 18 8o | 23 5 24
21 8 12 8 51 | 18 I 18 81 | 23 | 10 | 24
22 8 34 8 52 | 18 | 17 | 18 82 | 23 | 13 | 24
23 | 8 | 5719 53 | 18 | 32 | 19 83 | 23 | 17 | 24
24 | 9 19 9 54 | 18 | 47 | 19 84 | 23 | 20 | 24
251 9 | 41| 9 5119 | 2 |19 85 | 23 | 22 | 24
26 | 10 | 3 10 56 | 19 | 16 | 19 86 | 23 | 24 | 24
27 | 10 | 25 | 10 57 | 19 | 30 | 20 87 | 23 | 26 | 24
28 | 10 | 46 | 10 58 | 19 | 44 | 20 88 | 23 | 27 | 24
29 | II 8 10 59 | 19 | 57 | 20 89 | 23 | 28 | 24
30 | 1 | 29 | 1I 6o | 20 | 10 | 20 9o | 23 | 28 | 24
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Table of Right Ascensions page 31v
Dif- Dif- Dif- ¥ s
Ecli-| Decli- fer- Ecli-| Decli- fer- Ecli-| Decli- fer- B gt
ptic | nation | ence ptic | nation | ence ptic | nation | ence B o

NEE BN

De- | De- |Min-|Min- De- | De- |Min-|Min- De- | De- [Min-|Min- y
gree | gree | ute | ute gree | gree | ute | ute gree | gree | ute | ute
I o |55 | o 31 | 28 | 54 | 4 61 | 58 | 5T | 4
2 |1 |50] o0 32 | 29 | 5T | 4 62 | 59 | 54 | 4
31 2 |45 | o 33 |30 |50 | 4 63 | 60 | 57 | 4
4| 3 |4 | o0 34 | 31 | 46 | 4 64 | 62 | o | 4
51 4 |3 ]o 35 | 32| 45 | 4 65 | 63 | 3 | 4
6 | 5 |30 |0 36 |33 |43 |5 66 | 64 | 6 | 3
7 16 |25 ] 1 37 | 34 | 41| 5 67 | 65 3
3 7 | 20| 1 38 | 35 | 40 | 3 68 | 66 | 13 3
9 | 8 | 15| 1 39 | 36 | 38| 5 69 | 67 | 17 | 3
10| 9 I I 40 [ 37 37| 5 70 | 68 | 21 | 3
im | o | 6 I 41 | 38 | 36 | 5 71 | 69 | 25 | 3
2 | o 2 42 |39 [ 35| 5 72 | 70 | 29 | 3
B | |57 | 2 43 | 40 | 34 | 5 B3B3
4 | 12 | 52 | 2 44 | 41 | 33 | 6 74 | 72 | 38 | 2
5| 3| 48 | 2 45 | 42 [ 32 | 6 75073 | 43| 2
16 | 14 | 43 | 2 46 | 43 | 3t | 6 76 | 74 | 47 | 2
7|15 |39 | 2 47 | 44 | 32 | 5 77 175 | 52| 2
8 | 16 | 34 | 3 48 | 45 | 32| 5 78 [ 76 | 57 | 2
19 | 17 | 31 | 3 49 | 46 | 32 | 3 79 | 78 | 2 2
20 | 18 | 27 | 3 50 | 47 | 33| 5 8o | 79 2
21 | 19 | 23 3 51 | 48 | 34 5 81 | 8o | 12 I
22 | 20 | 19 | 3 52 | 49 | 35 | § 82 | 81 | 17 | 1
23 | 21 | 1§ 3 53 | 50 | 36 5 83 | 82 | 22 I
24 | 22 | 10 | 4 54 | st |37 |5 84 | 83 | 27 | 1
25 1 23| 9 | 4 55 52| 38| 4 85 | 84 | 33 | 1
26 | 24 | 6 4 56 | 53 | 41 | 4 86 | 8 | 38 | o
27 |25 | 3 | 4 57 | 54 | 43 | 4 87 |86 | 43 | ©
28 | 26 | o 4 58 | 55 | 45 | 4 88 | 87 | 48 | o
29 | 26 | 57 | 4 59 | 56 | 46 | 4 89 | 88 | 54 | o
30 | 27 | 54 | 4 6o | 57 | 48 | 4 90 [ 90 | o | ©
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Table of Meridian Angles page 32r

Dif- Dif- Dif-
Ecli-| Decli- | fer- Ecli-| Decli- | fer- Ecli-| Decli- | fer-
ptic nation ence ptic nation ence ptic nation ence
De- | De- |Min-|Min- De- | De- |Min-|Min- De- | De- [Min-|Min-
gree | gree | ute | ute gree | gree | ute | ute gree | gree | ute | ute
I | 66 | 32 | 24 31 | 69 | 35 | 21 6r | 78 | 7 | 12
2 | 66 | 33 | 24 32 | 69 | 48 | 21 62 | 78 | 29 | 12
3 | 66 | 34 | 24 33 | 70| o | 20 63 | 78 | 51 | I
4 | 66 | 35 | 24 34 | 70 | 13 | 20 64 | 79 | 14 | 1I
5 |66 | 37 | 24 35 | 70 | 26 | 20 65 | 79 | 36 | I
6 | 66 | 39 | 24 36 | 70 | 39 | 20 66 | 79 | 59 | 10
7 | 66 | 42 | 24 37 | 70 | 53 | 20 67 | 8o | 22 | 10
8 | 66 | 44 | 24 38 | 71 7 19 68 | 80 | 45 | 10
9 | 66 | 47 | 24 39 | 71| 22 | 19 69 | 81 1 9 | 9
10 | 66 | 51 | 24 40 | 71 | 36 | 19 70 | 81 [ 33| 9
Im | 66 | 55 | 24 41 | 71 | 52 | I9 71 | 81 | 58 8
2 | 66 | 59 | 24 42 | 72 | 8 | 18 72 | 82 | 22 | 8
3| 67| 4 | 23 43 | 72 | 24 | 18 73 | 82 | 46 | 7
14 | 67 | 10 | 23 44 | 72 | 39 | 18 74 | 8 | | 7
5 | 67 | 15 | 23 45 | 72 | 55 | 17 75 | 83| 35 | 6
16 | 67 | 21 | 23 46 | 73 | 1 | 17 76 | 84 | o 6
17 | 67 | 27 | 23 47 | 73 | 28 | 17 77 | 84 | 25 | 6
8 | 67 | 34 | 23 S| 73| | 78 | 84 | 50 | 5
19 | 67 | 41 | 23 49 | 74 | 6 | 16 79 | 8 | 15| 5
20 | 67 | 49 | 23 50 | 74 | 24 | 16 80 | 85 | 40 | 4
21 | 67 | 56 | 23 ST | 74 | 42 | 16 81 | 86 | g3 4
22 | 68 | 4 | 22 52 | 75 I 15 82 | 86 | 30 | 3
23 | 68 | 13 | 22 53 1 75 | 21 | 15 83 | 86 | s5 3
24 | 68 | 22 | 22 54 | 75 | 40 | 15 84 | 8 | 19 3
25 | 68 | 32 | 22 51 76 | 1| 14 8 | 87 | 53 | 2
26 | 68 | 41 | 22 56 | 76 | 21 | 14 86 | 88 | 17 | 2
27 | 68 | 51 | 22 57 | 76 | 42 | 14 87 | 88 | 41 | 1
28 | 69 | 2 21 81 771 3 13 88 | 89 | 6 I
29 | 69 | 13 | 21 59 | 77 | 24| 13 89 | 89 | 33| o
30 | 69 | 24 | 21 60 | 77 | 45 | 13 90 | 9o | © o
For every heavenly body situated outside the ecliptic, provided that the page 32v
body’s latitude and longitude are known, the method of determining its N

declination, its right ascension, and the degree of the ecliptic with which it

reaches mid-heaven. Chapter 4.

The foregoing explanations concerned the ecliptic, equator, [meridian], and
their intersections. In connection with the daily rotation, however, it is impor-
tant to know not only those appearances in the ecliptic which reveal the causes
of the phenomena of the sun alone. It is important to know also that a similar

procedure will show the declination from the equator and the right ascension
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of those fixed stars and planets which are outside the ecliptic, provided, how-
ever, that their longitude and latitude are given.

Accordingly, draw the circle ABCD through the poles of the equator and
ecliptic. Let AEC be a semicircle of the equator with its pole at F, and BED a

semicircle of the ecliptic with its pole at G, and
its intersection with the equator at point E. Now
from the pole G, draw the arc GHKL through a
star. Let the place of the star be given as point
H, through which let the quadrant FHMN be

drawn from the pole of the daily rotation. Clearly,

then, the star at H crosses the meridian together
with the two points M and N. The arc HMN is

the star’s declination from the equator, and EN is the star’s right ascension on

the sphere. These are the coordinates which we are looking for.

Now in triangle KEL, side KE and angle KEL are given, and EKL is a
right angle. Therefore, in accordance with Theorem IV on Spherical Triangles,
sides KL and EL as well as the remaining angle KLE are given. Therefore the
whole arc HKL is given. Consequently in triangle HLN, angle HLN is given,
LNH is a right angle, and side HL is given. Hence, in accordance with the
same Theorem IV on Spherical Triangles, the remaining sides HN, the star’s
declination, and LN are given. [ When LN is subtracted from EL], the remain-
der is NE, the right ascension, the arc through which the sphere turns from the
equinox to the star.

Alternatively, from the foregoing relationships you may take arc KE of the
ecliptic as the right ascension of LE. Then LE in turn will be given by the
Table of Right Ascensions. LK will be given as the declination corresponding
to LE.

Angle KLE will be given by the Table of Meridian Angles. From these quanti-
ties, the rest will be determined, as has already been shown. Then, through the
right ascension EN, we obtain EM as the degree of the ecliptic at which the
star reaches mid-heaven together with the point M.

The intersections of the horizon. Chapter 3.
In the right sphere the horizon is a different circle from the horizon in the
oblique sphere. For in the right sphere that circle is called the horizon to which

the equator is perpendicular, or which passes through the poles of the equator.
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But in the oblique sphere the equator is inclined to the circle which we call the
horizon. Therefore at the horizon in the right sphere all bodies rise and set, and
the days are always equal to the nights. For, the horizon bisects all the parallels
of latitude described by the daily rotation; it passes through their poles, of course,
and under those circumstances the phenomena occur which I have already ex-
plained with regard to the meridian [II, 1, 3]. But in this instance we regard the
day as extending from sunrise to sunset, and not in some way from daylight to
darkness, as it is commonly understood, that is, from dawn to the first artificial
light. But I shall say more about this subject in connection with the rising and
setting of the zodiacal signs [II, 13].

On the other hand, where the earth’s axis is perpendicular to the horizon,
nothing rises and sets. On the contrary, everything revolves in a circle, perpetu-
ally visible or hidden. The exception is what is produced by another motion,
such as the annual revolution around the sun. As a result of this it follows that
under those conditions day lasts continuously for a period of six months, and
night for the rest of the time. Nor is there any other difference than that be-
tween winter and summer, since in that situation the equator coincides with
the horizon.

In the oblique sphere, however, certain bodies rise and set, while certain
others are always visible or hidden. Meanwhile the days and nights become
unequal. Under these circumstances the horizon, being oblique, is tangent to
two parallels of latitude, according to the amount of its inclination. Of these
two parallels, the one toward the visible pole is the boundary of the bodies
which are perpetually visible; and the opposite parallel, the one toward the
hidden pole, is the boundary of the bodies which are perpetually hidden. Ex-
tending throughout the entire latitude between these limits, therefore, the ho-
rizon divides all the intervening parallels of latitude into unequal arcs. The
equator is an exception, since it is the greatest of the parallels of latitude, and
great circles bisect each other. In the upper hemisphere, then, the horizon ob-
liquely cuts off from the parallels of latitude greater arcs toward the visible pole
than toward the southern and hidden

pole. The converse is true in the hidden hemisphere. The apparent daily mo-
tion of the sun in these arcs produces the inequality of the days and nights.
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The differences in noon shadows.  Chapter 6.

In noon shadows too there are differences, on account of which some people
are called periscian, others amphiscian, and still others heteroscian. Now the
periscians are the people whom we may label “circumumbratile,” since they
receive the sun’s shadow in all directions. And they are the people whose ze-
nith, or pole of the horizon, is at a distance from the earth’s pole which is
smaller, or not greater, than the distance of a tropic from the equator. For in
those regions the parallels of latitude to which the horizon is tangent are the
boundaries of the perpetually visible or hidden stars, and are greater than the
tropics, or equal to them. And therefore in the summer time the sun, high up
among the perpetually visible stars, in that season casts the shadows of the
sundials in all directions. But where the horizon is tangent to the tropics, these
themselves become the boundaries of the perpetually visible and perpetually
hidden stars. Therefore at the time of the solstice the sun is seen to graze the
earth at midnight. At that moment the entire ecliptic coincides with the hori-
zon, six zodiacal signs rise swiftly and simultaneously, the opposite signs in
equal number set at the same time, and the pole of the ecliptic coincides with
the pole of the horizon.

The amphiscians, whose noon shadows fall on both sides, are the people
who live between the two tropics, in the region which the ancients call the
middle zone. Throughout that whole area the ecliptic passes directly overhead
twice [daily], as is demonstrated in Theorem II of Euclid’s Phenomena. Hence
in the same area the sundials’ shadows vanish twice, and as the sun moves to
either side, the sundials cast their shadows sometimes to the south, and at other
times to the north.

We, the rest of the earth’s inhabitants, who live between the amphiscians
and the periscians, are the heteroscians, because we cast our noon shadows in
only one of these directions, that is, the north.

Now the ancient mathematicians used to divide the earth into seven climes
by means of the several parallels of latitude passing, for example, through Meroe,
Syene, Alexandria, Rhodes, the Hellespont, the middle of the Black Sea, the
Dnieper, Constantinople and so on. [These parallels were selected on a three-
fold basis:] the difference and increase in the length of the longest day [in the
specified localities during the course of a year]; the length of the shadows ob-
served by means of sundials at noon on the equinoctial days and the two sol-

stices of the sun;

80 Nicolaus Copernicus. De Revolutionibus Orbium Ceelestium, Libri VI. Nuremberg, 1543. THE WARNOCK LIBRARY




and the altitude of the pole or the width of each clime. These quantities, having
partly changed with time, are not exactly the same as they once were. The

reason is, as I mentioned [II, 2], the variable obliquity of the ecliptic, which was

overlooked by previous astronomers. Or, to speak more
precisely, the reason is the variable inclination of the A
equator to the plane of the ecliptic. Those quantities
depend on this inclination. But the altitudes of the
pole, or the latitudes of the places, and the shadows on
the equinoctial days agree with the recorded ancient
observations. This had to happen, because the equator
tollows the pole of the terrestrial globe. Therefore those
climes likewise are not drawn and bounded with suffi-
cient precision by means of any impermanent proper-

ties of shadows and days. On the other hand, they are

delimited more correctly by their distances from the

P [

equator, which remain the same forever. But that vari-
ation in the tropics, although it is quite small, in southern localities allows a
slight difference of days and shadows, which becomes more perceptible to those
who travel north.

Now so far as the shadows of sundials are concerned, then, for any given
altitude of the sun obviously the length of the shadow is obtained, and con-
versely. Thus, let there be a sundial AB, which casts a shadow BC. Since the
pointer is perpendicular to the plane of the horizon, it must always make ABC
aright angle, in accordance with the definition of lines perpendicular to a plane.
Hence, if AC is joined, we shall have the right triangle ABC, and for a given
altitude of the sun, we shall have also angle ACB given. In accordance with
Theorem I on Plane Triangles, the ratio of the pointer AB to its shadow BC
will be given, and BC will be given as a length. In turn, when AB and BC are
given, in accordance with Theorem III on Plane Triangles, angle ACB and the
altitude of the sun casting that shadow at the time will also be known. In this
way, in their description of those climes of the terrestrial globe, the ancients
assigned to each clime its own length of noon shadow, not only on the equinoc-

tial days, but also on both solstitial days.
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How to derive from one another the longest day, the distance between
sunrises, and the inclination of the sphere; the remaining differences be-

tween days. Chapter 7.

Thus also for any obliquity of the sphere or inclination of the horizon, I shall
simultaneously demonstrate the longest and shortest day as well as the distance
between sunrises, and the remaining difference between the days. Now the
distance between sunrises is the arc of the horizon intercepted between the
sunrises at the solstices, summer and winter, or the distance of both of them
from the sunrise at the equinox.

Then let ABCD be the meridian. In the eastern hemisphere let BED be
the semicircle of the horizon, and AEC the semicircle of the equator. Let the
equator’s north pole be F. Assume that the sunrise at the summer solstice is in
the point G. Draw FGH as an arc of a great circle. Now since the rotation of
the terrestrial globe is accomplished around F, the pole of the equator, points G
and H must reach the meridian ABCD together. For, their parallels of latitude

are drawn around the same poles, and all great circles passing through these

poles cut off similar arcs of those parallels. There-

A
fore the time elapsing from the rising at G until ‘\ 2
noon is equally the measure of arc AEH, and of \ ?\
B
CH, th fth icircle below the horizon, : .
, the rest of the semicircle below the horizon :\hgi...lp

the time from midnight until sunrise. Now AEC n I;‘;,_,/
is a semicircle, while AE and EC are quadrants, \/\ '
being drawn from the pole of ABCD. Conse- i

quently EH will be half of the difference between

the longest day and the equinoctial day, while EG will be the distance between
the equinoctial and solstitial sunrises. In triangle EGH, therefore, GEH, the
angle of the obliquity of the sphere, is known through the arc AB. GHE is a
right angle. Side GH also is known as the distance of the summer solstice from
the equator. Therefore, in accordance with Theorem IV on Spherical Triangles,
the remaining sides are also given: EH, half of the difference between the equi-
noctial day and the longest day, as well as GE, the distance between the sunrises.
Furthermore if, together with side GH, side EH, [half] the difference between
the longest day and the equinoctial day, or EG is given, E, the angle of the
inclination of the sphere, is given, and therefore so is FD, the altitude of the

pole above the horizon.
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Next, assume that G on the ecliptic is not the solstice, but any other point.
Nevertheless, both of the arcs EG and EH will be known. For from the Table of
Declinations exhibited above, GH is obtained as the arc of declination corre-
sponding to that degree of the ecliptic, and all the other quantities are found by
the same method of proof. Hence it also follows that the degrees of the ecliptic

which are equidistant from the solstice cut off the same arcs of the horizon

from the equinoctial sunrise, and in the same direction. They also make the
days and nights equal in length. This happens because the same parallel of
latitude contains both degrees of the ecliptic, since their declination is equal
and in the same direction. However, when equal arcs are taken in both direc-
tions from the intersection with the equator, the distances between the risings
come out equal again, but in opposite directions, and in the inverse order the
lengths of the days and nights are equal too, because on both sides they de-
scribe equal arcs of the parallels of latitude, just as the points equidistant from

the equinox have equal declinations from the equator.

Now in the same diagram, draw arcs of par-
allels of latitude. Let them be GM and KN, in-
tersecting the horizon BED in points G and K.
From L, the south pole, also draw LKO as a quad-
rant of a great circle. Then the declination HG
is equal to KO. Hence there will be two trian-
gles, DFG and BLK, in which two sides are equal
to two corresponding sides: FG to LK, and FD,

the altitude of the pole, to LB. B and D are right angles. Therefore the third
side, DG, is equal to the third side, BK. Their remainders, GE and EK, the
distances between the risings, are also equal. Here too, then, two sides, EG and
GH, are equal to two sides, EK and KO. The vertical angles at E are equal.
Hence the remaining sides, EH and EO, are equal. When these equals are

added to equals, as a sum the whole arc OEC is
equal to the whole arc AEH. But since great
circles drawn through the poles cut off similar

arcs of parallel circles on spheres, GM and KN

will also be similar and equal. Q.E.D.
However, all this can be demonstrated also

in another way. Draw the meridian ABCD in

the same way. Let its center be E. Let the diam-
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eter of the equator and its intersection with the meridian be AEC. Let the diam-
eter of the horizon and the meridian line be BED; the axis of the sphere, LEM,;
the visible pole, L; and the hidden pole, M. Assume that the distance of the
summer solstice or that any other declination is AF. At this declination draw FG
as the diameter of a parallel of latitude and also as the parallel’s intersection with

the meridian. FG will intersect the axis at K, and the meridian line at N.

Now according to Posidonius’ definition, parallels neither converge nor diverge,
but make the perpendicular lines between them everywhere equal. Therefore
the straight line KE will be equal to half of the chord subtending twice the arc
AF. Similarly, with reference to the parallel of latitude whose radius is FK, KN
will be half of the chord subtending the arc marking the difference between the
equinoctial day and the unequal day. The reason for this is that all the semicir-
cles, of which these lines are the intersections, that is, of which they are the
diameters, namely, BED of the oblique horizon, LEM of the right horizon,
AEC of the equator, and FKG of the parallel of latitude, are perpendicular to
the plane of the circle ABCD. And, in accordance with Euclid’s Elements, X1,

19, the lines in which these semicircles inter-

F
sect one another are perpendicular to the same e =
plane at points E, K, and N. In accordance with / \
Theorem 6 of the same Book, these perpen- | 4 ..fl‘::w B

diculars are parallel to one another. K is the

|l WP N /
center of the parallel of latitude, and E is the }i/ \\‘}&
\_/. &

center of the sphere. Therefore EN is half of
the chord subtending twice the horizon arc

marking the difference between sunrise on the parallel of latitude and the equi-
noctial sunrise. AF, the declination, is given, together with FL, the remainder
of the quadrant. Hence KE and FK, as halves of the chords subtending twice
the arcs AF and FL, will be known in units whereof AE is 100,000. But in the
right triangle EKN, angle KEN is given through DL, the altitude of the pole;
and KNE, the complementary angle, is equal to AEB, because as parallels of
latitude on the oblique sphere they are equally inclined to the horizon. There-
fore the sides are given in the same units whereof the radius of the sphere is
100,000. Now in units whereof FK, the radius of the parallel of latitude, is
100,000, KN also will be given. And as half of the chord subtending the entire
difference between the equinoctial day and [the day pertaining to] the parallel

of latitude, KN will be given in units whereof in like manner the parallel as a
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circle is 360. Hence the ratio of FK to KN clearly consists of two ratios, namely,
the ratio of the chord subtending twice FL to the chord subtending twice AF,
that is, FK:KE, and the ratio of the chord subtending twice AB to the chord
subtending twice DL. The latter ratio is equal to EK:KN, with EK of course
taken as the mean proportional between FK and KN. Similarly the ratio of BE
to EN is likewise formed by the ratios BE:EK and KE:EN, as Ptolemy shows
in greater detail by means of spherical segments [Synzaxis, I, 13]. In this way, I
believe, the inequality of the days and nights is found. But also in the case of
the moon and of whatever stars the declination is given, the segments of the
parallels of latitude described by them in the daily rotation above the horizon
are distinguished from the segments which are below the horizon. From these

segments their risings and settings can easily be learned.
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Table of the Difference in the Ascensions on an Oblique Sphere

De- Elevation of the Pole
clina-
tion 3T 32 33 34 35 36
degree | degree | minute | degree | minute | degree | minute | degree | minute | degree | minute | degree | minute
I o 36 o 37 o 39 o 40 o 42 o 44
2 I 12 I 15 I 18 I 21 I 24 1 27
3 I 48 I 53 I 57 2 2 2 6 2 11
4 2 24 2 30 2 36 2 42 2 48 2 55
5 3 I 3 8 3 15 3 23 3 3t 3 39
6 3 37 3 46 3 55 4 4 4 13 4 23
7 4 14 4 24 4 34 4 45 4 56 5 7
8 4 51 5 2 5 14 5 26 5 39 5 52
9 5 28 5 41 5 54 6 8 6 22 6 36
10 6 5 6 20 6 35 6 50 7 6 7 22
I 6 42 6 59 7 15 7 32 7 49 8 7
12 7 | 20 7 38 7 56 8 15 8 34 8 53
13 7 58 8 18 8 37 8 58 9 18 9 39
14 8 37 8 58 9 19 9 41 10 3 10 26
15 9 16 9 38 10 I 10 25 10 49 11 14
16 9 55 10 19 10 44 11 9 I 35 12 2
17 10 35 11 I I 27 11 54 12 22 12 50
18 11 16 11 43 12 11 12 40 13 9 13 39
19 11 56 12 25 12 55 13 26 13 57 14 29
20 12 38 13 9 13 40 14 13 14 46 15 20
21 13 20 13 53 14 26 15 o 15 36 16 2
22 | 14 | 3 4 | 37 | 15 | B | 15 | 49 | 16 | 27 | 17 5
23 14 47 15 23 16 o 16 38 17 17 17 58
24 15 3I 16 9 16 48 17 29 18 10 18 52
25 16 16 16 56 17 38 18 20 19 3 19 48
26 17 2 17 45 18 28 19 12 19 58 20 45
27 17 50 18 34 19 19 20 6 20 54 21 44
28 18 38 19 24 20 12 21 I 21 5I 22 43
29 19 27 20 16 21 6 21 57 22 50 23 45
30 20 18 21 9 22 I 22 55 23 5I 24 48
31 21 10 22 3 22 58 23 55 24 53 25 53
32 22 3 22 59 23 56 24 56 25 57 27 o
33 22 57 23 54 24 19 25 59 27 3 28 9
34 23 55 24 56 25 59 27 4 28 Io 29 21
35 24 | 53 25 | 57 | 27 3 28 | 10 | 29 21 | 30 | 35
36 25 53 27 o 28 9 29 21 30 35 3t 52
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Table of the Difference in the Ascensions on an Oblique Sphere
De- Elevation of the Pole
clina-
tion 37 38 39 40 41 42
degree | degree | minute | degree | minute | degree | minute | degree | minute | degree | minute | degree | minute

I o 45 o 47 o 49 o 50 o 52 o 54
2 I 31 I 34 I 37 I 41 I 44 I 48
3 2 16 2 21 2 26 2 31 2 37 2 42
4 3 I 3 8 3 15 3 22 3 29 3 37
5 3 | 47| 3 55 | 4 4 4 | B | 4 | 2| 4 | 3
6 4 33 4 | 43 4 53 5 4 5 15 5 26
7 5 19 5 30 5 42 5 55 6 8 6 21
8 6 5 6 18 6 32 6 46 7 I 7 16
9 6 51 7 6 7 22 7 38 7 55 8 12
10 7 38 7 55 8 13 8 30 8 49 9 8
Ir 8 25 8 44 9 3 9 23 9 44 | 10 5
2 9 3 9 34 9 55 10 16 10 39 I 2
13 10 I 10 24 10 46 I 10 I 35 2

14 10 50 11 14 I 39 12 5 2 31 2 58
15 I 39 12 5 12 32 13 o 13 28 13 58
16 12 29 12 57 13 26 13 55 14 26 14 58
17 13 19 3 49 14 20 14 52 15 25 15 59
18 14 10 14 42 15 15 15 49 16 24 7 I
19 15 2 15 36 16 11 16 48 17 25 18 4
20 15 55 16 31 17 8 17 47 18 27 19 8
21 16 49 17 27 18 7 18 47 19 30 20 13
22 17 44 18 24 19 6 19 49 20 34 21 20
23 18 39 19 22 20 6 20 52 21 39 22 28
24 19 36 20 21 21 3 21 56 22 46 23 38
25 20 34 21 21 22 11 23 2 23 55 24 50
26 21 34 22 24 23 16 24 10 25 5 26 3
27 22 35 23 28 24 22 25 19 26 17 27 18
28 23 37 24 33 25 30 26 30 27 31 28 36
29 24 41 25 40 26 40 27 43 28 48 29 57
30 25 47 26 49 27 52 28 59 30 7 31 19
3t | 26 | 55 | 28 o 29 7 | 30 | 17 | 3t | 29 | 32 | 45
32 28 5 29 13 30 54 3T 31 32 54 34 4
33 29 18 30 29 3t 44 33 I 34 22 35 47
34 30 32 3t 48 33 6 34 27 35 54 37 24
35 3t 5T 33 Io 34 33 35 59 37 30 39 5
36 | 33 | 12 | 34 | 35 | 36 2 37 | 34 | 39 | 10 | 40 | 31
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Table of the Difference in the Ascensions on an Oblique Sphere

De- Elevation of the Pole
clina-
tion 43 44 45 46 47 48
degree | degree | minute | degree | minute | degree | minute | degree | minute | degree | minute | degree | minute
I o 56 o 58 I o I 2 I 4 I 7
2 I 52 I 56 2 o 2 4 2 9 2 13
3 2 48 2 54 3 o 3 7 3 13 3 20
4 3 44 3 52 4 I 4 9 4 18 4 27
5 4 41 4 51 5 I 5 2 5 23 5 35
6 5 37 5 50 6 2 6 15 6 28 6 42
7 6 | 34 | 6 | 49 | 7 3 7 | 8 | 7 |34 | 7 | 50
8 7 32 7 48 8 5 8 22 8 40 8 59
9 8 30 8 48 9 7 9 26 9 47 | 10 8
10 9 28 9 48 10 9 10 3I 10 54 I 18
I 10 27 10 49 I 3 11 37 I2 2 12 28
12 11 26 11 5I 12 16 12 43 13 II 13 39
13 12 26 2 53 13 21 3 50 4 20 4 51
14 13 27 13 56 14 26 14 58 15 30 16 5
15 14 28 15 o 15 32 16 7 16 42 17 19
16 15 3I 16 5 16 40 17 16 17 54 18 34
17 16 34 17 10 17 48 18 27 19 8 19 5I
18 17 38 18 17 18 58 19 40 20 23 21 9
19 18 44 19 25 20 9 20 53 21 40 22 29
20 19 50 20 35 21 21 22 8 22 58 23 5I
21 20 59 21 46 22 34 23 25 24 18 25 14
22 22 8 22 58 23 50 24 44 25 40 26 40
23 23 19 24 12 25 7 26 5 27 5 28 8
24 24 32 25 28 26 26 27 27 28 31 29 38
25 25 47 26 46 27 48 28 52 30 o 31 12
26 27 3 28 6 29 11 30 20 31 32 32 48
27 28 22 29 29 30 38 31 5I 33 7 34 28
28 | 29 | 44 | 30 | 54 | 32 7 33 | 25 | 34 | 46 | 36 | 12
29 31 8 32 22 33 40 35 2 36 28 38 o
30 | 32 | 35 | 33 | 53 | 35 | 16 | 36 | 43 | 38 5 | 39 | 53
3T | 34 5 35 | 28 | 36 | 56 | 38 | 29 | 40 7 41 | 52
32 35 38 37 7 33 | 40 | 40 | 19 | 42 4 43 57
33 37 16 38 50 40 30 42 15 44 8 46 9
34 | 38 | 58 | 40 | 39 | 42 | 25 | 44 | 18 | 46 | 20 | 48 | 31
35 | 40 | 46 | 42 | 33 | 44 | 27 | 46 | 23 | 48 | 36 | 51 3
36 | 42 | 39 | 44 | 33 | 46 | 36 | 48 | 47 | 51 I 53 | 47
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Table of the Difference in the Ascensions on an Oblique Sphere page 37v
De- Elevation of the Pole
clina-
tion 49 50 5T 52 53 54
degree | degree | minute | degree | minute | degree | minute | degree | minute | degree | minute | degree | minute

I I 9 I 12 I 4 I 7 I 20 I 23
2 2 18 2 23 2 28 2 34 2 39 2 45
3 3 27 3 35 3 43 3 51 3 59 4 8
4 4 37 4 47 4 57 5 8 5 19 5 3
5 5 47 5 50 6 12 6 26 6 40 6 55
6 6 57 7 12 7 27 | 7 | 44 | 8 I 8 19
7 8 7 8 25 8 43 9 2 9 23 9 44
8 9 18 9 38 10 o 10 22 10 45 I 9
9 10 30 10 53 I 17 11 42 2 8 2 35
10 I 42 12 8 12 35 3 3 13 32 4 3
I 12 55 13 24 13 53 14 24 14 57 15 3t
12 4 9 14 40 15 3 15 47 16 23 17 o
13 15 24 15 58 16 34 17 I 17 50 18 32
14 16 40 17 17 17 56 18 37 19 19 20 4
15 17 57 18 39 19 19 20 4 20 50 21 38
16 19 16 19 59 20 44 21 32 22 22 23 15
17 20 36 21 22 22 11 23 2 23 56 24 53
18 21 57 22 47 23 39 24 34 25 33 26 34
19 23 20 24 14 25 10 26 9 27 I 28 17
20 | 24 | 45 | 25 | 42 | 26 | 43 | 27 | 46 | 28 | 53 | 30 4
21 26 12 27 14 28 18 29 26 30 37 31 54
22 27 42 28 47 29 56 31 8 32 25 33 47
23 29 14 30 23 3t 37 32 54 34 17 35 45
24 3t 4 32 3 33 21 34 44 36 13 37 48
25 | 32 | 26 | 33 | 46 | 35 | 10 | 36 | 39 | 38 | 14 | 39 | 59
26 34 8 35 32 37 2 38 38 40 20 42 10
27 | 35 | 53 | 37 | 23 | 39| o | 40 | 42 | 42 | 33 | 44 | 32
28 37 43 39 19 41 2 42 53 44 53 47 2
29 39 37 41 21 43 12 45 2 47 a1 49 44
30 41 37 43 29 45 29 47 39 50 I 52 37
3t 43 44 45 44 47 54 50 16 52 53 55 48
32 | 45 | 57 | 48 8 50 | 30 | 53 7 56 I 59 | 19
3 | 48 | 19 | 50 | 44 | 53 | 20 | 56 | 13 | 59 | 28 | 63 | 21
34 | 50 | 54 | 53 | 30 | 56 | 20 | 59 | 42 | 63 | 31 | 68 | 1
35 | 53 | 40 | 56 | 34 | 59 | 58 | 63 | 40 | 68 | 18 | 74 | 32
36 | 56 | 42 | 59 | 59 | 63 | 47 | 68 | 26 | 74 | 36 | 90 | ©
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Table of the Difference in the Ascensions on an Oblique Sphere page 38r
De- Elevation of the Pole
clina-
tion 55 56 57 58 59 60
degree | degree | minute | degree | minute | degree | minute | degree | minute | degree | minute | degree | minute
I I 26 I 29 I 32 I 36 I 40 I 44
2 2 52 2 58 3 5 3 12 3 20 3 28
3 4 17 4 27 4 38 4 49 5 o 5 2
4 5 | 44 | 5 57 6 11 6 25 6 41 6 57
5 7 11 7 27 7 44 8 3 8 22 8 43
6 3 38 8 58 9 19 9 41 10 4 10 29
7 10 6 10 29 10 54 I 20 38 47 2 7
8 183 35 2 I 2 30 13 o 13 32 4 5
9 | B | 4 | B | 35 | 4 | 7 | 4 | 4| 5|17 |15 |5
o | 14 | 35 | I3 9 5 | 45 | 16 | 23 | 17 4 17 | 47
II 16 7 16 45 17 25 18 8 18 53 19 41
12 17 40 18 22 19 6 19 53 20 43 21 36
13 19 15 20 I 20 50 21 41 22 36 23 34
14 20 52 21 42 22 35 23 31 24 31 25 35
15 22 30 23 24 24 22 25 23 26 29 27 39
16 24 10 25 9 26 12 27 19 28 30 29 47
7 | 25 | 53 | 26 | 57 | 28 5 29 | 18 | 30 | 35 [ 31 | 59
18 27 39 28 48 30 I 31 20 32 44 34 19
19 | 29 | 27 | 30 | 41 | 32 I 33 | 26 | 34 | 58 | 36 | 37
20 | 3t | 19 | 32 | 39 | 34 [ 5 | 35 |3 |37 | w7 |39 |5
ar | 33 | 15 | 34 | 41 | 36 | 14 | 37 | 54 | 39 | 42 | 41 | 40
22 35 14 36 48 38 28 40 17 42 15 44 25
23 | 37 | 19 | 39 | o | 40 | 49 | 42 | 47 | 44 | 57 | 47 | 20
24 | 39 | 29 | 4t | 8 | 43 | 17 | 45 | 26 | 47 | 49 | 50 | 27
25 | 41 | 45 | 43 | 44 | 45 | 54 | 48 | 16 | 50 | 54 | 53 | 52
26 | 44 9 46 | 8 | 48 | 41 | 5T | 19 | 54 | 16 | 57 | 39
27 | 46 | 41 | 49 4 S| 41 | 54 | 38 | 38 o 6r | 57
28 49 24 52 I 54 58 58 19 62 14 67 4
29 52 20 55 16 58 36 62 31 67 18 73 46
30 | 55 | 32 | $8 | 52 | 62 | 45 | 67 | 31 | 73 | 55 | 90 | ©
3T | 59 6 62 | 58 | 67 | 42 | 74 4 | 90 | o
32 63 10 67 53 74 12 90 o
33 68 I 74 19 90 o
34 | 74 | 33 | 90 | o
35 | 90 | o
36
The hours and parts of the day and night. Chapter 8. page 38v
From the foregoing, therefore, it is clear that, for a stated altitude of the pole, r .
we may take the difference in the days as indicated for a declination of the sun !
in the Table. This difference may be added to a quadrant in the case of a north-
ern declination, or subtracted from it in the case of a southern declination. If
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the result is doubled, we shall have the length of that day, and the duration of
the night, which is the rest of the circle.

If either of these two is divided by 15 degrees of the equator, the quotient
will show how many equal hours it contains. But if we take the twelfth part, we
shall have the duration of a seasonal hour. Now these hours take the name of
their day, of which they are always the twelfth part. Hence the terms “summer
solstitial, equinoctial, and winter solstitial hours” are found employed by the
ancients. Nor were any other hours originally in use than the twelve hours from
dawn to dusk. But they used to divide the night into four vigils or watches. This
regulation of the hours lasted for a long time by the unspoken agreement of all
nations. For the purpose of this regulation, water-clocks were invented. By the
subtraction from and addition to the water dripped from these clocks, the hours
were adjusted to the difference in the days, so that the subdivision of time
would not be obscured even by a cloudy sky. Afterwards, equal hours, common
to daytime and nighttime, were generally adopted. Since these equal hours are
easier to observe, the seasonal hours became obsolete. Hence, if you ask any
ordinary person which is the first, third, sixth, ninth or eleventh hour of the
day, he has no answer or at any rate his answer has no relevance to the subject.
Also with regard to the numbering of the equal hours, some now take it from
noon, others from sunset, others from midnight, and still others from sunrise,

in accordance with the decision of each society.

The oblique ascension of the degrees of the ecliptic; how to determine what

degree is at mid-heaven when any degree is rising. Chapter 9.

Now that I have thus explained the lengths of the days and nights as well as the
difference in those lengths, the next topic in proper order is the oblique ascensions.
I refer to the times during which the dodecatemories, that is, the twelve zodiacal

signs, or any other arcs of the zodiac, rise. For, between right ascensions and oblique

ascensions, there are no differences other than
those which I set forth between the equinoctial
day and a day which is unequal to its night in
length. Now the names of living things have been
borrowed for the zodiacal signs, which consist of
immovable stars. Starting from the vernal equi-

nox, the signs have been called Ram, Bull, Twins,

Crab, and so on, as they follow in order.
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For the sake of greater clarity, then, again draw the meridian ABCD. Let
AEC, the semicircle of the equator, and the horizon BED intersect each other
in the point E. Put the equinox in H. Let the ecliptic FHI, passing through H,
intersect the horizon in L. Through this intersection draw KLM, the quadrant
of a great circle, from K, the pole of the equator. Thus it is certainly clear that
arc HL of the ecliptic rises with HE of the equator. But in the right sphere, HL
rose with HEM. The difference between them is EM which, as I showed above
[II, 7], is half of [the difference between] the equinoctial day and the unequal
day. But what was added there in a northern declination, is subtracted here. In
a southern declination, on the other hand, it is added to the right ascension in
order to obtain the oblique ascension. Accordingly, how long a whole sign, or
other arc of the ecliptic, takes to rise will be made clear by the ascensions com-
puted from the beginning to its end.

Hence it follows that when any degree of the ecliptic, measured from the
equinox, is given as rising, the degree which is at mid-heaven is also given. For,
L [being the point which is] rising [on the ecliptic], given its declination through
HL, its distance from the equinox, its right ascension HEM, and the whole of
AHEM as the arc of the half-day, then the remainder, AH, is given. This is the
right ascension of FH, which is given by the Table, or also because AHF, the
angle of the obliquity, is given, together with the side AH, while FAH is a right
angle. Therefore the whole arc FHL of the ecliptic is given between the degree
of rising and the degree at mid-heaven.

Conversely, if the degree at mid-heaven, for instance, the arc FH, is given

first, we shall also know the degree

which is rising. For, the declination AF will be obtained, and so will AFB,
through the angle of obliquity of the sphere, and the remainder FB. Now in
triangle BFL, angle BFL is given by what precedes; so is side FB; and FBL is a
right angle. Therefore the required side FHL is given. An alternative method
of obtaining it will appear below [II, 10].

The angle at which the ecliptic intersects the horizon. Chapter 10.

Furthermore, since the ecliptic is a circle oblique to the axis of the sphere, it
makes various angles with the horizon. It is perpendicular to the horizon twice
for those who live between the tropics, as I have already said with regard to the
differences in the shadows [II, 6]. However, I think that it is enough for us to

demonstrate only those angles which concern us who live in the heteroscian
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region. From these angles, the entire theory of e
the angles will be easily understood. Now in /

the oblique sphere, when the equinox or first
point of the Ram is rising, the ecliptic is lower

and turns toward the horizon to the extent

added by the greatest southward declination,

which occurs when the first point of the Goat
is at mid-heaven. Conversely, at a higher altitude the ecliptic makes the angle
of rising greater when the first point of the Balance rises, and the first point of
the Crab is at mid-heaven. The foregoing statements are quite obvious, I be-
lieve. For, these three circles, the equator, ecliptic, and horizon, by passing
through the same intersection, meet in the poles of the meridian. The arcs of
the meridian intercepted by these circles show how great the angle of rising is
judged to be.

But a way of measuring it also for the other degrees of the ecliptic may be
explained. Again let the meridian be ABCD, half of the horizon BED, and
half of the ecliptic AEC. Let any degree of the ecliptic rise at E. We are re-
quired to find how great the angle AEB is in units whereof 4 right angles =
360°. Since E is given as the rising degree, the degree at mid-heaven is also
given by the previous discussion, as is also the arc AE together with the merid-
ian altitude AB. Because ABE is a right angle, the ratio of the chord subtend-
ing twice AE to the chord subtending twice AB is given as equal to the ratio of

the diameter of the sphere to the chord subtending twice the arc which meas-
ures the angle AEB.

Therefore the angle AEB also is given.

However, the given degree may be, not at the rising, but at mid-heaven. Let
it be A. Nevertheless the angle of rising will be measured. For, with its pole at
E, draw FGH as the quadrant of a great circle. Complete the quadrants EAG
and EBH. Now AB, the altitude of the meridian, is given, and so is AF, the
remainder of the quadrant. Angle FAG is also given by the foregoing, and
FGA is a right angle. Therefore the arc FG is given. So is the remainder GH,
which measures the required angle of rising. Here too, then, it is clear how,
given the degree at mid-heaven, the degree at the rising is given. For, the ratio
of the chord subtending twice GH to the chord subtending twice AB is equal
to the ratio of the diameter to the chord subtending twice AE, as in Spherical
Triangles [1, 14, Theorem III].
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For these relations too I have subjoined three kinds of Tables. The first will
give the ascensions in the right sphere, beginning with the Ram, and advancing
by 6° of the ecliptic. The second will give the ascensions in the oblique sphere,
likewise in steps of 6° from the parallel of latitude whose pole’s altitude is 39°,
by half-steps of 3° to the parallel with its pole at 57°. The remaining Table will
give the angles made with the horizon, also by steps of 6° in the same 7 col-
umns. All these computations are based on the minimum obliquity of the ecliptic,

23° 28’, which is approximately correct for our age.

Table of the Ascensions of the Zodiacal Signs page 40v
in the Revolution of the Right Sphere
i e
Ecliptic Ascension Forth(;S:;gle Ecliptic Ascension Fo]r)t;enegle 1': " j

Sign | Degree | Degree | Minute | Degree | Minute Sign | Degree | Degree | Minute | Degree | Minute
T | 6 5 |30 | o | 55 L | 6 | 85 | 30 | o | 55
12 I o o 55 2 191 o o 55
18 16 34 o 56 18 196 34 o 56
24 22 10 o 56 24 | 202 | 10 o 56
30 27 54 o 57 30 | 207 | 54 o 57
o 6 | 33 | 43 | o | 38 m | 6 | 23| 43 | o | 38
2 39 35 o 59 12 219 35 o 59
18 45 32 I o 18 22§ 32 I o
24 51 37 I I 24 231 37 I I
30 57 48 I 2 30 237 48 I 2
I 6 64 6 I 3 2 6 244 6 I 3
2 70 29 I 4 2 250 29 I 4
18 76 57 I 5 18 256 57 I 5
24 83 27 I 5 24 263 27 I 5
30 90 o I 5 30 | 270 o I 5
oo 6 96 33 I 5 5 6 276 | 33 I 5
12 103 3 I 5 12 283 3 I 5
18 109 31 I 5 18 289 31 I 5
24 | 15 | 54 1 4 24 | 295 | 54 1 4
30 122 2 I 3 30 | 302 2 I 3
Q 6 128 | 23 I 2 oo 6 | 308 | 23 I 2
12 134 28 I I 12 314 28 I I
18 140 25 I o 18 320 25 I o
24 146 17 o 59 24 | 326 7 o 59
30 152 6 o 58 30 332 6 o 58
W | 6 | 57| 50 | o | 57 X | 6 |37 |50 | o | 57
12 163 26 o 56 12 343 26 o 56
18 169 o o 56 18 349 o o 56
24 174 | 30 o 55 24 | 354 | 30 o 55
30 180 o o 55 30 | 360 o o 55
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Table of the Ascensions in the Oblique Sphere
Altitude of the Pole
Ecliptic 39 42 45 48 51 54 57
Ascension | Ascension | Ascension | Ascension | Ascension | Ascension | Ascension
De- | De- |Min-| De- |Min-| De- [Min-| De- [Min-| De- [Min-| De- |Min-| De- |Min-
Sign | gree | gree | ute | gree | ute |gree | ute | gree | ute | gree | ute | gree | ute | gree | ute
P 6 3 34| 3 |20 3 6 2 |50 | 2 | 32| 2 12 I | 49
|7 10| 6 |44 |6 | 15| 5 |44]| 5|8 | 4 |27] 3|40
8 |10 |50 |10 |10 | 9 [27 | 8 |39 | 7 |47 |6 |44 5 |34
24 | 14 | 32 | 13 |39 | 12 | 43| 11 |40 |10 | 28 | 9 7 7 | 32
30 | 18 [ 26 | 17 | 21 | 16 | 1m | 14 | 51 | 13 | 26 | I | 40 | 9 | 40
3 6 22 [ 30 | 21 | 12 | 19 | 46 | 18 | 14 | 16 | 25 | 14 | 22 | 1™ | 57
12 | 26 | 39 | 25 |10 | 23 | 32 |2 | 42|19 |38 |17 | 13| 14|23
18 | 31 | 0o |29 |20 | 27 |29 | 25 |24 |23 | 2 |20 |17 | 17| 2
24 |35 | 38 | 33 | 47 | 31 | 43 | 29 | 25 | 26 | 47 | 23 | 42 | 20
30 | 40 [ 30 [ 38 [ 30 |36 | 15 | 33 | 41 | 30 | 49 | 27 | 26 | 23 | 22
I | 6 | 45 [ 39 |43 | 30 | 41 | 7 |38 | 23|35 |15 |30 |34 |27 7
2 | 51 8 | 48 | 52 | 46 | 20 | 43 | 27 | 40 | 8 |36 | 13 | 31 | 26
18 | 56 | 56 | 54 | 35 | 5T | 56 | 48 | 56 | 45 | 28 | 41 | 22 | 36 | 20
24 | 63 | 0 | 60 |36 | 57 [ 54 |54 |49 | ST |15 |47 | 1 | 41| 49
30 | 69 [ 25 | 66 | 59 | 64 | 16 | 61 | 10 | 57 | 34 | 53 | 28 | 48 2
16 | 76| 6 | 73|42 | 71| 0|67 |55 |64 20|60 7 |54/ 55
12 | 83 | 2 |80 | 41 | 78 | 2 | 75 | 2 | 71 | 34 | 67 | 28 | 62 | 26
8 |90 | 10 | 8 | 54 |8 | 22 |8 |29 |79 | 10| 75 |15 |70 | 28
24 | 97 | 27| 95|19 | 92| 55 |90 | 1 | 87 | 3 | 83 | 22 | 78 | 55
30 | 104 | 54 | 102 | 54 [100 | 39 | 98 | 5 | 95 | 13 | 9T | 50 | 87 | 46
Q| 6 |m2 | 24 |1m0| 33 [108| 30 |106 | 11 [103 | 33 |100 | 28 | 96 | 48
12 | 119 | 56 | 118 | 16 | 116 | 25 | 114 | 20 | 11 | 58 | 109 | 13 | 105 | 58
18 | 127 | 29 |126 | o |124| 23 [I22 | 32 |120 | 28 |8 | 3 | w5 | 13
24 | 135 | 4 | 133 | 46 | 132 | 21 | 130 | 48 | 128 | 59 | 126 | 56 | 124 | 31
30 | 142 | 38 | 141 | 33 140 | 23 | 139 | 3 | 137 | 38 | 135 | 52 | 133 | 52
mp| 6 |150 | 11 |149 | 19 | 148 | 23 | 147 | 20 | 146 | 8 | 144 | 47 | 143 | 12
12 | 157 | 41 | 157 | T | 156 | 19 | 155 | 29 | 154 | 38 | 153 | 36 | 153 | 24
18 | 165 | 7 | 164 | 40 | 164 | 12 | 163 | 41 | 163 | 5 | 162 | 24 | 162 | 47
24 | 172 | 34 | 172 | 21 |172 | 6 | 171 | 51T | I71 | 33 | I71 | 12 | 170 | 49
30 |[180| o |180| o |[180| o [180| o |180| 0 |180| 0 |180 | O
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Table of the Ascensions in the Oblique Sphere page 41v

Altitude of the Pole . T
Ecliptic 39 ) 45 48 51 54 57 ;

Ascension | Ascension | Ascension | Ascension | Ascension | Ascension | Ascension

De- | De- |[Min-| De- |[Min-| De- |Min-| De- [Min-| De- |Min-| De- |Min-| De- |Min-
Sign | gree | gree | ute | gree | ute |gree | ute | gree | ute | gree | ute | gree | ute | gree | ute

>
[}
-
&

26 | 187 | 39 | 187 | 54 | 188 | 9 | 188 | 27 | 188 | 48 | 189 | 1
12 | 194 | 53 | 195 | 19 | 195 | 48 | 196 | 19 | 196 | 55 | 197 | 36 | 198 | 23
18 |202 | 21 [ 203 | O [203 | 41 |204| 30 | 205 | 24 |206| 25 |207| 36
24 | 209 | 49 | 210 | 41 | 211 | 37 | 212 | 40 | 213 | 52 | 215 | 13 | 216 | 48
30 | 217 | 22 | 218 | 27 | 219 | 37 220 | 57 | 222 | 22 | 224 | 8 |[226| 8
M| 6 [224] 56 [226| 14 |227| 38 |229| 12 | 231 | I |233| 4 |235| 29
12 [ 232 | 31 | 234 | o [235| 37 [237| 28 239 | 32 | 241 | 57 |244 | 47
18 | 240 | 4 | 24T | 44 | 243 | 35 | 245 | 40 248 | 2 | 250 | 47 | 254 | 2
24 | 247 | 36 | 249 | 27 | 250 | 30 | 253 | 49 [256 | 27 |259 | 32 | 263 | 12
30 | 255 | 6 [257 | 6 |259 | 21 | 261 | 52 | 264 | 47 268 | 10 | 272 | 14
2 6 | 262 | 33 |264 | 41 | 267 | 5 |269| 49 | 272 | 57 | 276 | 38 | 281 | 5
12 [269 | 50 | 272 | 6 |274| 38 | 277 | 31 |280| 50 | 284 | 45 | 289 | 32
18 | 276 | 58 | 279 | 19 | 281 | 58 | 284 | 58 | 288 | 26 | 292 | 32 | 297 | 34
24 | 283 | 54 | 286 | 18 | 289 | o 292 | 5 |295| 39 |299 | 53 |305 | §
30 290 | 35 | 293 | 1 |299 | 45 | 298| 50 [302 | 26 |306 | 42 | 31r | 58
b | 6 [297| o | 295 24 [302| 6 |305| 1 [308| 45 | 312 | 59 318 |
12 |303| 4 [305| 25 [308| 4 |31 | 4 [314| 32 |38 | 38 |323| 40
18 (308 | 52 |30 | 8 | 313 | 40 | 316 | 33 | 319 | 52 | 323 | 47 |328 | 34
24 | 314 | 21 | 316 | 29 | 318 | 53 | 321 | 37 | 324 | 45 | 328 | 26 | 332 | 53
30 | 319 [ 30 | 321 | 30 | 323 | 45 |326 | 19 |329 | Ir |332| 34 |336 | 38
324 | 21 | 326 | 13 | 328 | 16 330 | 35 | 333 | 13 336 | 18 | 339 | 58
12 (329 | 0 |330| 40 [332 | 31 [334| 36 |336 | 58 339 | 43 | 342 | 58
18 (333 | 21 334 | 50 336 | 27 | 338 | 18 | 340 | 22 | 342 | 47 | 345 | 37
24 (33730 | 338 | 48 [340 | 3 |34 | 46 343 | 35 | 345 | 38 |348| 3
30 | 341 | 34 |342| 39 | 343 | 49 | 345 | 9 |346 | 34 [348 | 20 | 350 | 20
Ho| 6 | 345 |29 [346 | 21 | 347 | 17 | 348 | 20 349 | 32 | 350 | 53 | 352 | 28
12 (349 | II |349 | ST [350 | 33 | 350 | 21 | 352 | 14 |353 | 16 | 354 | 26
18 352 | 50 | 353 | 16 | 353 | 45 | 354 | 16 | 354 | 52 | 355 | 33 |356 | 20

24 | 356 | 26 | 356 | 40 | 356 | 23 | 357 | 10 | 357 | 53 | 357 | 48 | 358 | 1
30 [360| o |360| o [360| o |360| o [360| O |360| o [360]| O

:
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Table of the Angles made by the Ecliptic with the Horizon page 42r

Altitude of the Pole
Ecliptic 39 42 45 48 51 54 57 Ecliptic

Angle Angle Angle Angle Angle Angle Angle

De- | De- [Min-| De- |Min-| De- [Min-| De- |Min-| De- |Min-| De- [Min-| De- |Min-| De-
Sign | gree | gree | ute | gree | ute | gree | ute | gree | ute | gree | ute |gree | ute | gree | ute | gree | Sign

Plo |27 3224321318 |32]|15|3]|n][32]9]32]30
6 |27 |37 |24 |36 |20 36|18 36|15 |35 |12|35]9 |35]24
12 | 27 | 49 | 24 [ 49 | 21 | 48 | 18 | 47 | 15 | 45 | 12 | 43 | 9 | 41 | 18
18|28 |13 [25] 9 [22|6 |19 3 |15]|5 |12[5]|9]5]12

Ip

24 | 28 | 45 | 25 |40 | 22 |34 |19 |29 |16 |23 | 13|18 |10]| 13| 6
30 |29 |27 |26 | 15 |23 | 11 |20 5 |16 |56 | 13 | 45 | 10 | 31 | 30
S| 6 3019|279 |23|59]|20|48 |17 |35 |14|20|1m| 2|24
12 | 31 | 21 [ 28 | 9 [24 |56 | 21 | 41 | 18 | 23 | 15 | 3 | 11 | 40 | 18
18 |32 (35|29 |20 |26 3 [22|43 |19 | 21| 15|56 12]|26] 12
24 34| 5 | 30|43 |27 |23 |24| 2 |20 41|16 59|13 |20 6 |
30 |35 |40 |32 | 17 | 28 | 52 | 25 | 26 | 21 | 52 | 18 | 14 | 14 | 26 | 30
I | 6 |37 |29 34| 1 [30[37]27] 5 [23[1|19]|42|715 48|24
2 |39 | 32|36 | 4 | 323228 |56]|25 |15 |2 |25]|17|23]|18
I8 | 41 | 44 |38 | 14 |34 | 41 | 31 | 3 |27 | 18 | 23| 25|19 |16 | 12
24 |44 | 8 |40 |32 (37| 2 [33|22|29|35 |25 (37 |21|26]6]1%
30 |46 | 41 | 43 | 11 |39 |33 |35 |53 |32 |5 |28 |6 |23|5]30
18 | 45 | 51 |42 | 15 | 38 | 35 | 34 | 44 | 30 | 50 | 26 | 36 | 24
12 52| 3 | 4834 |45| 0 |41 | 8 | 37|55 (33 |43|29 34|18
18 | 54 | 44 | ST | 20 | 47 | 48 | 44 | 13 | 40 | 31 | 36 | 40 | 32 | 39 | 12
24 (57|30 |54 |5 [50[38 47| 6 |43[33]39|43|35|50]6|%b
30 |60 | 4 |56 |42 |53 |22 |49 |54 |46 | 21 | 42| 43|38 |56 |30
| 6 | 6240|5359 (27|56 0 |52|34[49| 9 |45]|37|41]|57 |24
12 | 64 |59 | 61 | 44 |58 | 26 | 55 | 7 | 51|46 | 48 | 19 | 44 | 48 | 18
18 | 67| 7 | 63|56|60|20]|57 26|54 | 6 |50 47| 47| 24| 12
24 [ 68 |59 | 65|52 (62| 42]|59[30 56|17 |53]|7 [49]|47]| 6
30 |70 |38 |67 |27 |64 |18 | 61|17 |58 | 9 |54]58]52]38]30
Mp| 6 | 72| o |68]53]|65|50|62/46159]37]|56]27]|53]|16]24
12 | 73| 4 70| 2 [66]59|63]|56]|60]|53]|57|50]|54|46]| 18
18 | 73 [ 5T |70 |50 | 67|49 | 64 | 48 | 61 | 46 | 58 | 45 | 55 | 44 | 12
24 | 74 |19 | 71 |20 | 68 |20 | 65 | 19 | 62 | 18 | 59 | 17 | 56 | 16 | 6
30 | 74 | 28 | 71 | 28 | 68 | 28 | 65 | 28 | 62 | 28 | 59 | 28 | 56 | 28 | o | X

6

i

The use of these tables. Chapter 1. page 42v

The use of the Tables is already clear from what has been established. For when
the degree of the sun is known, we have received the right ascension. To it, for

any equal hour, we add 15° of the equator. If the total exceeds the 360° of a

whole circle, they are cast out. The remainder of the right ascension will show
the related degree of the ecliptic at mid-heaven at the hour in question, starting

from noon. If you perform the same operation for the oblique ascension of your
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region, in like manner you will have the rising degree of the ecliptic at an hour
counted from sunrise. Moreover, for any stars which are outside the zodiac and
whose right ascension is known, as I showed above [1I, 9], these Tables give the
degrees of the ecliptic which are at mid-heaven with these stars, through the
same right ascension, starting from the first point of the Ram. The oblique
ascension of those stars gives the degree of the ecliptic which rises with them,
as the ascensions and degrees of the ecliptic are revealed directly by the Tables.
You will proceed in the same way with regard to the setting, but always through
the opposite place. Furthermore, if a quadrant is added to the right ascension
which is at mid-heaven, the resulting sum is the oblique ascension of the rising
degree. Therefore, through the degree at mid-heaven, the degree at the rising is
also given, and conversely. The next Table gives the angles made by the ecliptic
with the horizon. These angles are determined by the degree of the ecliptic at
the rising. From them it is also learned how great the altitude of the ninetieth
degree of the ecliptic is from the horizon. A knowledge of this altitude is abso-

lutely necessary in eclipses of the sun.

The angles and arcs of those circles which are drawn through the poles of the
horizon to the ecliptic. ~Chapter 12.

I may next explain the theory of the angles and arcs occurring at the intersec-
tions of the ecliptic with those circles which pass through the zenith of the
horizon and on which the altitude above the horizon is taken. But the noon
altitude of the sun or of any degree of the ecliptic at mid-heaven, and the angle
of the ecliptic’s intersection with the meridian were set forth above [1I, 10]. For,

the meridian too

is one of the circles which pass through the zenith of the horizon. The angle at
the rising has also been discussed already. When this angle is subtracted from a
right angle, the remainder is the angle formed with the rising ecliptic by a
quadrant passing through the zenith of the horizon.

It remains, then, by repeating the previous dia-

gram [II, 10], to look at the intervening intersec-
tions, I mean, of the meridian with the semicircles
of the ecliptic and horizon. Take any point on the
ecliptic between noon and rising or setting. Let this
point be G. Through it draw the quadrant FGH
from F, the pole of the horizon. Through the des-
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ignated hour, the whole arc AGE of the ecliptic between the meridian and the
horizon is given. AG is given by hypothesis. In like manner AF is also given,
because the noon altitude AB is given. The meridian angle FAG is likewise
given. Therefore FG is also given, by what was proved with regard to spherical
triangles. The complement GH, which is the altitude of G, is given, together
with angle FGA. These we were required to find.

This treatment of the angles and intersections connected with the ecliptic,
I excerpted compactly from Ptolemy while I was reviewing the discussion of
spherical triangles in general. If anybody wishes to work on this subject, he will
be able by himself to find more applications than those which I discussed only

as examples.

The rising and setting of the heavenly bodies. Chapter 13.

The risings and settings of the heavenly bodies also belong with the daily rota-
tion, as is evident. This is true not only for those simple risings and settings
which I just discussed, but also for the ways in which the bodies become morn-
ing and evening stars. Although the latter phenomena occur in conjunction
with the annual revolution, they will nevertheless be treated more appropri-
ately in this place.

The ancient mathematicians distinguish the true [risings and settings] from
the visible. The true are as follows. The morning rising of a heavenly body
occurs when it appears at the same time as the sun. On the other hand, the
morning setting of the body occurs when it sets at sunrise. Throughout this
entire interval the body was called a “morning star.” But the evening rising
occurs when the body appears at sunset. On the other hand, the evening setting
occurs when the body sets at the same time as the sun. In the intervening

period it is called an “evening star” because

it is obscured by day and comes forth at night.

By contrast, the visible risings and settings are as follows. The morning
rising of the body occurs when it first emerges and begins to appear at dawn
and before sunrise. On the other hand, the morning setting occurs when the
body is seen to have set just as the sun is about to rise. The body’s evening rising
occurs when it first appears to rise at twilight. But its evening setting occurs
when it ceases any longer to be visible after sunset. Thereafter the presence of
the sun blots the body out, until at their morning rising [the heavenly bodies]

emerge in the order described above.
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In the same way as these phenomena occur in the fixed stars, they occur also
in the planets Saturn, Jupiter, and Mars. But the risings and settings of Venus and
Mercury are different. For they are not blotted out by the approach of the sun, as
the other planets are, nor are they made visible by its departure. On the contrary,
when they precede the sun, they immerse themselves in its brilliance and extri-
cate themselves. When the other planets have their evening rising and morning
setting, they are not obscured at any time, but shine throughout almost the entire
night. On the other hand, Venus and Mercury disappear completely from [evening]
setting to [morning] rising, and cannot be seen anywhere. There is also another
difference. In Saturn, Jupiter, and Mars, the true risings and settings are earlier
than the visible in the morning, and later in the evening, to the extent that they
precede sunrise in the first case, and follow sunset in the second case. On the
other hand, in the lower planets the visible morning and evening risings are later
than the true, whereas the settings are earlier.

Now the way in which the [risings and settings] may be determined can be
understood from what was said above, where I explained the oblique ascension
of any star having a known position, and the degree of the ecliptic with which
it rises or sets [II, 9]. If at that time the sun appears in that degree or the
opposite degree, the star will have its true morning or evening rising or setting.

From these, the visible risings and settings differ according to the brilliance
and size of each body. Thus, those which have a more powerful light are ob-
scured by the sun’s rays for a shorter time than those which are less bright.
Moreover, the limits of disappearance and appearance are determined by the
subhorizontal arcs, between the horizon and the sun, on the circles which pass
through the poles of the horizon. For fixed stars of the first magnitude, these
limits are almost 12° for Saturn, 11°% for Jupiter, 10°% for Mars, 11%2° for Venus, 5°
and for Mercury, 10° But the whole belt in which the remnant of daylight
yields to night, the belt which embraces twilight or dawn, contains 18° of the
aforesaid circle. When the sun has descended by these 18° the smaller stars also

begin to appear. Now this is the distance at which

some people put a plane parallel to the horizon and below it. When the sun
reaches this plane, they say that the day is beginning or the night is ending. We
may know with what degree of the ecliptic a body rises or sets. We may also
discover the angle at which the ecliptic intersects the horizon at that same
degree. We may also find at that time as many degrees of the ecliptic between

the rising degree and the sun as are enough and as are associated with the sun’s
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depth below the horizon in accordance with the aforementioned limits of the
body in question. If so, we shall assert that its first appearance or disappearance
is occurring. However, what I explained in the preceding demonstration with
regard to the sun’s altitude above the earth also fits in all respects its descent
below the earth, since there is no difference in anything but position. Thus, the
bodies which set so far as the visible hemisphere is concerned, rise so far as the
hidden hemisphere is concerned, and everything occurs conversely and is read-
ily understood. Therefore, what has been said about the rising and setting of
the heavenly bodies, and, to that extent, about the daily rotation of the terres-
trial globe may be enough.

The investigation of the places of the stars, and the arrangement of the fixed

stars in a catalogue. Chapter 14.

Now that I have expounded the terrestrial globe’s daily rotation and its conse-
quences with respect to the days and nights and their parts and variations, the
explanations of the annual revolution ought to have come next. Not a few as-
tronomers, however, agree with the traditional practice of giving precedence to
the phenomena of the fixed stars as the foundations of this science. Hence I
thought that I in particular should adhere to this judgment. For among my
principles and fundamental propositions I have assumed that the sphere of the
fixed stars is absolutely immovable; and that the wanderings of all the planets
are rightly compared with it. Yet someone may wonder why I adopted this
order, whereas in his Synzaxis [111, 1, introduction] Ptolemy considered that an
explanation of the fixed stars could not be given unless the knowledge of the
sun and moon came first, and for this reason he deemed it necessary to post-
pone his discussion of the fixed stars until then.

If, on the other hand, you interpret it as referring to the calculations for
computing the apparent motion of the sun and moon, perhaps Ptolemy’s opin-
ion will hold good. For, the geometer Menelaus likewise kept track of most of
the stars and their places through computations based on their conjunctions

with the moon.

But we shall do much better if we locate any star with the help of instru-
ments through a careful examination of the positions of the sun and moon, as I
shall soon show. I am also warned by the ineffectual attempt of those who
thought that the length of the solar year should be delimited simply by the

equinoxes or solstices, and not also by the fixed stars. In this effort down to our
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own time they have never been able to agree, so that nowhere has there been
greater dissension. This was noticed by Ptolemy. When he computed the solar
year in his own age, not without suspecting that an error could appear in the
course of time, he advised posterity to seek finer precision in this matter subse-
quently. Hence it seemed to me worth while in this book to show how skill
with instruments may establish the positions of the sun and moon, that is, the
amount of their distance from the vernal equinox or other cardinal points of
the universe. These places will then facilitate our investigation of other heav-
enly bodies, by means of which we may also set before the eyes the sphere of
the fixed stars studded with constellations, and its representation.

Now I have already explained the instruments by which we may determine
the distance between the tropics, the obliquity of the ecliptic, and the inclina-
tion of the sphere or the altitude of the pole of the equator [1I, 2]. In the same
way we can obtain any other altitude of the sun at noon. Through its difference
from the inclination of the sphere, this altitude will show us the amount of the
sun’s declination from the equator. Then through this declination its position
at noon, as measured from an equinox or solstice, will also become clear. Now
in a period of 24 hours the sun seems to pass through almost 1°% the hourly
fraction thereof amounts to 2%2". Hence for any designated hour other than
noon, its position will be easily inferred.

But for observing the positions of the moon and of the stars, another in-
strument is constructed, which Ptolemy calls the “astrolabe” [Syntaxis, V, 1].
Now two rings, or quadrilateral frames of rings, are made in such a way that
their flat sides, or members, are set at right angles to their concave-convex
surface. These rings are equal and similar in all respects, and of a convenient
size. That is, if they are too big, they become less manageable. Yet otherwise,
generous dimensions are better than skimpy, for the purpose of division into

parts. Thus let [the rings’] width and thickness

be at least one-thirtieth of the diameter. Then they will be joined and con-
nected with each other at right angles along the diameter, with the concave-
convex surfaces fitting together as though in the roundness of a single sphere.
In fact, let one of them take the place of the ecliptic; and the other, of the circle
which passes through the poles of both (I mean, of the equator and the eclip-
tic). Then the sides of the ecliptic ring should be divided into equal parts, which
are usually 360, and these may be further subdivided according to the size of

the instrument. Also on the other ring, by measuring quadrants from the eclip-

102 Nicolaus Copernicus. De Revolutionibus Orbium Ceelestium, Libri VI. Nuremberg, 1543. THE WARNOCK LIBRARY

page 45r



tic, indicate the poles of the ecliptic. Take a distance from these poles in pro-
portion to the obliquity of the ecliptic, and mark the poles of the equator too.

After these rings have been arranged in this way, two other rings are made.
They are fastened at the ecliptic’s poles, on which they will move, [one on the]
outside and [the other on the] inside. Make these rings equal to the others in
thickness between the two flat surfaces, while the width of their rims is similar.
Fit them together so that there is contact everywhere between the larger ring’s
concave surface and the ecliptic’s convex surface, as well as between the smaller
one’s convex surface and the ecliptic’s concave surface. However, let there be no
obstacle to their being turned about, but let them permit the ecliptic with its
meridian freely and easily to slide over them, and conversely. Hence we will
neatly perforate these rings at the diametrically opposite poles of the ecliptic,
and insert axles to attach and support them. Divide the inner ring also into 360
equal degrees, so that in each quadrant there are 9o° to the poles.

Furthermore, on the concave surface of this ring, another ring, the fifth,
should be placed, and be able to turn in the same plane. To the rims of this ring,
attach diametrically opposite brackets with apertures and peepholes or eye-
pieces. Here the light of the star can impinge and leave along the diameter of
the ring, as is the practice in the dioptra. Moreover, mount certain blocks on
both sides of the ring, as pointers toward the numbers on the containing ring,
for the purpose of observing the latitudes.

Finally, a sixth ring must be attached, to receive the whole astrolabe and
support it as it hangs from fastenings at the poles of the equator. Place this
sixth ring on a stand, sustained by which it will be perpendicular to the plane of
the horizon. Furthermore, when its poles have been adjusted to the inclination
of the sphere, let the astrolabe keep its meridian’s position similar to that of the
meridian in nature, without the slightest swerving away from it.

Then with the instrument fashioned in this way, we may wish to obtain the
place of a star. In the evening, or when the sun is about to set, at a time when we
also have the moon in view, we will line up the outer ring with the degree of the

ecliptic in which

we have found by what precedes that the sun is known to be then. We will also
turn the intersection of the rings toward the sun, until both of them, I mean,
the ecliptic and that outer ring which passes through the poles cast equal shad-
ows on each other. Then we also turn the inner ring toward the moon. Placing

our eye in the plane of the inner ring where we will see the moon opposite, as
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though it were bisected by the same plane, we will mark the spot on the instru-
ment’s ecliptic. For, that will be the observed place of the moon in longitude at
that time. In fact, without the moon there was no way of understanding the
positions of the stars, since of all the heavenly bodies it alone participates in the
day and night. Then, as night descends, the star whose place we are seeking can
now be seen. We fit the outer ring to the position of the moon. By means of
this ring we adjust the position of the astrolabe to the moon, as we did in the
case of the sun. Then we also turn the inner ring toward the star, until it seems
to touch the plane of the ring, and is visible through the eyepieces which are on
the smaller ring within. For in this way we shall find the longitude of the star
together with its latitude. While these operations are being performed, the
degree of the ecliptic at mid-heaven will be placed before our eyes, and there-
fore it will be clear as crystal at what hour the observation was carried out.
For example, in the 2nd year of the emperor Antoninus Pius, on the gth day
of Pharmuthi, the 8th Egyptian month, about sunset, Ptolemy in Alexandria
wanted to observe the place of the star in the chest of the Lion which is called
Basiliscus or Regulus [ Synzaxis VII, 2]. Training his astrolabe on the sun, which
was already setting, 5 [¥2] equinoctial hours after noon, he found the sun at
3%24° within the Fishes. By moving the inner ring, he observed the moon fol-
lowing 92%° after the sun. Therefore the place of the moon was then seen at
5%° within the Twins. Half an hour later, when the 6th hour after noon was
being completed, the star had already begun to appear, as 4° within the Twins
was at mid-heaven. Ptolemy turned the outer ring of the instrument to the
place where the moon had already been found. By proceeding with the inner
ring, he determined the distance of the star from the moon in the order of the
zodiacal signs as 57%10°. Now the moon was found 92%° away from the setting
sun, as was mentioned, and this fixed the moon at 5%° within the Twins. But in
the interval of half an hour the moon should have moved %°, since the fraction
per hour of the moon’s motion amounts to ¥2° more or less. However, on ac-
count of the lunar parallax, which had to be subtracted at that time, the moon

must have moved a little less than %4°,

and he determined the difference as about %2°. Accordingly the moon must
have been at 5%° within the Twins. But when I discuss the lunar parallaxes, it
will be evident that the difference was not so great [IV, 16]. Hence it can be
quite clear that the observed place of the moon exceeded 5°within the Twins by
more than %° and by hardly less than %68. To this position, the addition of §57%10°
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establishes the place of the star at 212° within the Lion, at a distance from the
sun’s summer solstice of about 32%° with a north latitude of %°. This was the
place of Basiliscus, through which the approach to all the other fixed stars lay
open. Now this observation was performed by Ptolemy, according to the Ro-
man [calendar] on 23 February 139 A.D., the first year of the 229th Olympiad.
In this way that most outstanding of astronomers noted the distance of
each of the stars from the vernal equinox at that time, and he set forth the
constellations of the celestial creatures. By these achievements he gave no small
assistance to this study of mine, and relieved me of quite an arduous task. I
believed that the places of the stars should not be located with reference to the
equinoxes, which shift in the course of time, but that the equinoxes should be
located with reference to the sphere of the fixed stars. Hence I can easily start
the cataloguing of the stars at some other unchangeable beginning. I have de-
cided to commence with the Ram, as the first zodiacal sign, and with its first
star, which is in its head. My purpose is that in this way always the same defini-
tive appearance will remain for those bodies which shine as a team, as though
fixed and linked together, once they have taken their permanent place. Now
through the wonderful zeal and skill of the ancients they were grouped into 48
figures. The exceptions are those stars which the circle of the perpetually hid-
den stars kept from the fourth clime, which passes near Rhodes, so that these
stars, as unknown to the ancients, remained unattached to a constellation. Nor
were the stars formed into figures for any other reason, according to the opin-
ion of the younger Theon in his commentary on Aratus, than that their vast
number should be separated into parts, which could be known one by one un-
der certain designations. This practice is quite old, since we read that even Job,
Hesiod, and Homer mentioned the Pleiades, Hyades, Arcturus, and Orion.
Therefore in tabulating the stars according to their longitude, I shall not use
the twelve zodiacal signs, which are derived from the equinoxes and solstices,
but the simple and familiar number of degrees. In all other respects I shall
tollow Ptolemy, with a few exceptions, which I find either corrupt or distorted
in some way. But the method of determining the distance of the stars from

those cardinal points will be explained by me in the next Book.
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DESCRIPTIVE CATALOGUE OF THE SIGNS AND STARS page 46v
I: Those which are in the Northern Region
Longitude Latitude
Constellations of the stars Degrees | Minutes Degrees | Minutes Magmtude

LITTLE BEAR OR DOG’S TAIL
At the tip of the tail 53 30 | N. | 66 o |3
To the east in the tail 55 50 N. 70 o 4
At the beginning of the tail 69 20 N. 74 o 4
The more southerly [star] on the western

sideof the quadrangle 83 o N. 75 20 | 4
The northern [star] on the same side 87 o N. 77 40 | 4
The more southerly [star] on the

[quadrangle’s] eastern side 100 30 N. 72 40 2
The northern [star] on the same side 109 30 N. 74 50 2
7 stars: 2 of the 2nd magnitude, 1 of the 3rd, 4 of the 4th
Near the Dog’s Tail, outside the constellation,

on a straight line with the [quadrangle’s]

eastern side, quite far to the south 103 20 N. 71 10 4
GREAT BEAR, (ALSO) CALLED THE DIPPER
On the muzzle 78 40 N. 39 50 | 4
[Of the stars] in the two eyes, the one to the

west 79 o | N.| 43 o |5
East of the foregoing 79 40 N. 43 o 5
[Of the two stars] in the forehead, the one to

the west 79 30 N. 47 10 5
The eastern [star] in the forehead 81 o N. 47 o 5
At the edge of the western ear 81 30 N. 50 30 |3
Of the two [stars] in the neck, the one to the

west 85 so | N. | 43 50 | 4
The one to the east 92 50 N. 44 20 | 4
Of the two [stars] in the chest, the one to the

north 94 20 | N. | 44 o 4
The one farther south 93 20 N. 42 o 4
In the knee of the left foreleg 89 o N. 35 o 3
Of the two [stars] in the left front paw, the

one to the north 89 50 N. 29 o 3
The one farther south 88 40 N. 28 30 |3
In the knee of the right foreleg 89 o N. 36 o 4
Below that knee 101 10 N. 33 30 | 4
In the shoulder 104 o N. 49 o 2
In the groin 105 30 | N. | 44 30 |2
At the beginning of the tail 116 30 N. 51 o 3
In the left hind leg 117 20 N. 46 30 2
Of the two [stars] in the left hind paw, the

one to the west 106 o N. 29 38 3
East of the foregoing 107 30 N. 28 15 3
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Longitude Latitude
Constellations of the stars Degrees | Minutes Degrees | Minutes Magmtude

In the joint of the left [hind leg] 115 o N. 35 15 4
Of the two [stars] in the right hind paw, the

one to the north 123 10 N. 25 50 3
The one farther south 123 40 N. 25 o 3
Of the three [stars] in the tail, the first one

east of the beginning [of the tail] 125 30 | N. 53 30 | 2
The one in the middle of these [three] 131 20 | N 55 40 | 2
The last one, at the tip of the tail 143 10 N. 54 o 2
27 stars: 6 of the 2nd magnitude, 8 of the 3rd, 8 of the 4th, 5 of the 5th
NEAR THE DIPPER, OUTSIDE THE CONSTELLATION
South of the tail 141 o | N.| 39 45 |3
The dimmer [star] to the west of the 133 30 N. 41 20 |5

foregoing

Between the Bear’s front paws & the Lions head | 98 20 N. 17 15 4
[The star] farther north than the foregoing 96 40 N. 19 10 4
The last of the three dim [stars] 99 30 N. 20 o dim
To the west of the foregoing 95 30 N. 22 45 dim
Farther west 94 30 N. 23 15 dim
Between the front paws and the Twins 100 20 N. 22 15 dim
8 stars outside the constellation: 1 of the 3rd magnitude, 2 of the 4th, 1 of the 5th, 4 dim
DRAGON
In the tongue 200 o N.| 76 30 | 4
In the mouth 215 10 N.| 78 30 | 4 brighter
Above the eye 216 30 N.| 75 40 |3
In the cheek 229 40 N.| 75 20 | 4
Above the head 223 30 N.| 75 30 |3
In the first twisting of the neck, the one to

the north 258 40 N.| 82 20 | 4
Of these [stars], the one to the south 295 50 N.| 78 15 4
The middle one of these same [stars] 262 10 N.| 8o 20 | 4
East of the foregoing, in the second twisting

[of the neck] 282 50 N.| 8 10 | 4
The southern [star] on the western side of the

quadrilateral 331 20 N.| 8 40 | 4
The northern [star] on the same side 343 50 N.| 83 o 4
The northern [star] on the eastern side I o N.| 78 50 | 4
The southern [star] on the same side 346 10 N.| 77 50 | 4
In the third twisting [of the neck], the south-

ern [star] of the triangle 4 o N.| 8o 30 | 4
Of the remaining [stars] of the triangle, the

one to the west 15 o N.| 8 40 |5
The one to the east 19 30 N.| 8o 15 5
Of the three [stars] in the triangle to the

west, [the star to the east] 66 20 N.| 83 30 | 4
Of the remaining [stars] in the same triangle,

the one to the south 43 40 N.| 83 30 | 4
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Longitude Latitude page 47v
Constellations of the stars Degrees | Minutes Degrees | Minutes Magmtude

The one to the north of the two preceding

[stars] 35 o | N. 84 50 | 4
Of the two small [stars west] of the triangle,

the one to the east 110 o | N. | & 30 |6
Of these [two stars] the one to the west 105 o N. 86 50 |6
Of the three [stars] which follow in a straight

line, the one to the south 152 30 N. 81 15 5
The middle one of the three 152 50 N. 83 o 5
The one farther north 151 o N. 84 50 3
Of the two [stars] to the west of the fore-

going, the one farther north 153 20 N. 78 o 3
[The one] farther south 156 30 | N. 74 40 | 4 brighter
To the west of the foregoing, in the coil of

the tail 156 o | N. | 7o o |3
Of the two [stars] at a very great distance,

the one to the west 120 40 N. 64 40 4
East of the foregoing 124 30 N. 65 30 |3
To the east, on the tail 102 30 | N. 61 15 3
At the tip of the tail 96 30 | N. | 36 5 |3

Therefore, 31 stars: 8 of the 3rd magnitude, 17 of the 4th, 4 of the 5th, 2 of the 6th

CEPHEUS
In the right foot 28 40 N. 75 40 4
In the left foot 26 20 N. 64 15 4
On the right side below the belt o 40 N. 71 10 4
Above the right shoulder and touching it 340 o N. 69 o 3
Touching the right hip joint 332 40 | N. 72 o 4
East of the same hip and touching it 333 20 N. 74 o 4
In the chest 352 o N. 65 30 |5
In the left arm I o N. 62 30 | 4 brighter
Of the three [stars] in the tiara, the one to
the south 339 40 N. 60 15 5
The one in the middle of these [three] 340 40 N. 61 15 4
Of the three, the one to the north 342 20 N. 61 30 |3
11 stars: 1 of the 3rd magnitude, 7 of the 4th, 3 of the 5th
Of the two [stars] outside the constellation,
the one to the west of the tiara 337 o N. 64 o 5
The one to the east of it 344 40 N. 59 30 | 4
HERDSMAN OR BEAR-KEEPER
Of the three [stars] in the left hand, the
one to the west 145 N. 58 40 |5
The middle one of the three, farther south 147 N. 58 20 |5
Of the three, the one to the east 149 N. 60 10 5
In the left hip joint 143 N. 54 40 5
In the left shoulder 163 N. 49 o 3
In the head 170 N. 53 50 4 brighter
In the right shoulder 179 N. 48 40 | 4
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Longitude Latitude
Constellations of the stars Degrees | Minutes Degrees | Minutes Magmtude

Of the two [stars] in the staff, the one farther

south 79 o N. 53 15 | 4
The one farther north, at the tip of the

staff 178 20 | NL| 37 30 | 4
Of the two [stars] on the spear below the

shoulder, the one to the north 181 o N. 46 10 4 brighter
Of these [two], the one farther south 181 50 N. 45 30 |5
At the tip of the right hand 181 35 N. 41 20 |3
Of the two [stars] in the palm, the one to

the west 180 o N. 41 40 |5
East of the foregoing 180 20 N. 42 30 5
At the tip of the handle of the staff 181 o N. 40 20 |5
In the right leg 173 20 N. 40 15 3
Of the two [stars] in the belt, the one to the

east 169 o N. 41 40 | 4
The one to the west 168 20 | N | 42 10 | 4 brighter
In the right heel 178 40 N. 28 o 3
Of the three [stars] in the left leg, the one

to the north 164 40 | N. 28 o 3
The middle one of the three 163 50 N. 26 30 | 4
The one farther south 164 50 N. 25 o 4
22 stars: 4 of the 3rd magnitude, 9 of the 4th, 9 of the 5th
Outside the constellation, between the legs,

called “Arcturus” 170 20 | N. 31 30 |1
NORTHERN CROWN
The bright [star] in the crown 188 o N. 44 30 2 brighter
The [most] westerly of all 185 o) N. 46 10 4 brighter
East [of the foregoing], to the north 185 10 N. 48 o 5
East [of the foregoing] farther north 193 o N. 50 30 |6
East of the bright [star], to the south 191 30 | N. | 44 45 | 4
Immediately to the east [of the foregoing] 190 30 N. 44 50 4
Somewhat farther to the east of the foregoing | 194 40 N. 46 10 4
The most easterly of all [the stars] in the

crown 195 o N. | 49 20 | 4
KNEELER
In the head 221 o N. | 37 30 |3
In the right armpit 207 o N. 43 o 3
In the right arm 205§ o N. 40 10 3
In the right [side of the] groin 201 20 N. 37 10 4
In the left shoulder 220 o N. 48 o 3
In the left arm 225 20 N. 49 30 | 4 brighter
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Longitude Latitude

page 48v
Constellations of the stars Degrees | Minutes Degrees | Minutes Magmtude

In the left [side of the] groin 231 o N. 42 o 4
Of the three [stars] in the left palm, [the one

to the east] 238 50 N. 52 50 | 4 brighter
Of the other two, the one to the north 235 o N. 54 o 4 brighter
The one farther south 234 50 N. 53 o 4
In the right side 207 10 N. 56 10 3
In the left side 213 30 | N. | 53 30 | 4
In the left buttock 213 20 N. 56 10 5
At the top of the same leg 214 30 N. 58 30 |5
Of the three [stars] in the left leg, the one to

the west 217 20 | N. | 59 50 |3
East of the foregoing 218 40 N. 60 20 4
The third one, east [of the foregoing] 219 40 N. 61 15 4
In the left knee 237 10 N. 61 o 4
In the left thigh 22§ 30 | N. | 69 20 | 4
Of the three [stars] in the left foot, the one to

the west 188 40 N. 70 15 6
The middle one of these [three] 220 10 N. 71 15 6
Of the three, the one to the east 223 o N. 72 o 6
At the top of the right leg 207 o N. | 60 15 4 brighter
[The star] farther north in the same leg 198 50 N. 63 o 4
In the right knee 189 o N. 65 30 | 4 brighter
Of the two [stars] below the same knee, the

one farther south 186 40 N. 63 40 4
The one farther north 183 30 | N. 64 15 4
In the right shin 184 30 N. 60 o 4

At the tip of the right foot; identical with [the
star] at the tip of the Herdsman’s staff | 178 20 N. 57 30 | 4

Not including the foregoing, 28 stars: 6 of the 3rd magnitude, 17 of the 4th,
2 of the 5th, 3 of the 6th

Outside the constellation, to the south of the
right arm 206 o | N.| 38 0 |5

LYRE

The bright [star] called “Lyre” or “Little

Lute” 250 40 | N. | 62 o 1
Of the two adjacent [stars], the one to the

north 253 40 | N. | 62 40 | 4 brighter
The one farther south 253 40 | N. 61 o 4 brighter
Between the curvature of the arms 262 o N. 60 o 4
Of the two [stars] close together in the east,

the one to the north 265 20 N. 61 20 | 4
The one farther south 265 o N. 60 20 | 4
Of the two [stars] to the west on the cross-

piece, the one to the north 254 20 N. 56 10 3
The one farther south 254 10 N. 55 o 4 dimmer
Of the two [stars] to the east on the same

crosspiece, the one to the north 257 30 N. 55 20 |3
The one farther south 258 20 | N. | 54 45 | 4 dimmer

10 stars: 1 of the 1st magnitude, 2 of the 3rd, 7 of the 4th
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Longitude Latitude
Constellations of the stars Degrees | Minutes Degrees | Minutes Magmtude

SWAN OR BIRD
In the mouth 267 so | N. | 49 20 |3
In the head 272 20 | N. | 50 30 |5
In the middle of the neck 279 20 N. 54 30 | 4 brighter
In the breast 291 50 N. 56 20 |3
The bright [star] in the tail 302 30 N. 60 o 2
In the bend of the right wing 282 40 N. 64 40 3
Of the three [stars] in the spread of the

right [wing], the one farther south 285 50 N. 69 40 | 4
The one in the middle 284 30 N. 71 30 | 4 brighter
The last of the three, at the tip of the wing 280 o N. 74 o 4 brighter
In the bend of the left wing 294 10 N. 49 30 |3
In the middle of that wing 298 10 N. 52 10 | 4 brighter
At the tip of the same [wing] 300 o N. 74 o 3
In the left foot 303 20 N. 55 10 | 4 brighter
In the left knee 307 | s0 | N. | 37 o |4
Of the two [stars] in the right foot, the one

to the west 294 | 30 | N. | 64 o |4
The one to the east 296 o N. 64 30 | 4
The cloudy [star] in the right knee 305 30 N. 63 45 5

17 stars: 1 of the 2nd magnitude, 5 of the 3rd, 9 of the 4th, 2 of the 5th

TWO ADDITIONAL [STARS] NEAR THE SWAN, OUTSIDE THE CONSTELLATION

Of the two [stars] below the left wing, the

one farther south 306 o N. 49 40 4
The one farther north 307 10 N. 51 40 | 4
CASSIOPEA
In the head 1 o | N.| 45 20 | 4
In the breast 4 10 N. 46 45 3 brighter
In the girdle 6 20 N. 47 50 4
Above the seat, at the hips 10 o N. 49 o 3 brighter
At the knees 13 40 | N. | 45 30 |3
In the leg 20 20 | NL| 4 45 | 4
At the tip of the foot 355 o N. | 48 20 | 4
In the left arm 8 o N. 44 20 | 4
In the left elbow 7 40 N. 45 o 5
In the right elbow 357 40 N. 50 o 6
In the foot of the chair 8 20 N. 52 40 | 4
In the middle of the back [of the chair] I 10 N. 51 40 | 3 dimmer
At the edge [of the back of the chair] 357 10 N. 51 40 | 6

13 stars: 4 of the 3rd magnitude, 6 of the 4th, 1 of the 5th, 2 of the 6th
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Constellations of the stars Degrees | Minutes Degrees | Minutes Magmtude

PERSEUS
At the tip of the right hand, in a cloudy

wrapping 21 o N. | 40 30 | cloudy
In the right elbow 24 30 | N. | 37 30 | 4
In the right shoulder 26 o N. 34 30 | 4 dimmer
In the left shoulder 20 50 N. 32 20 | 4
In the head or cloud 24 o N. 34 30 | 4
In the shoulder blades 24 50 N. 31 10 4
The bright [star] on the right side 28 10 N. 30 o 2
Of the three [stars] on the same side, the

one to the west 28 40 N. 27 30 | 4
The one in the middle 30 20 | N 27 40 | 4
The remaining [one] of the three 31 o N. 27 30 |3
In the left elbow 24 o N. 27 o 4
The bright [star] in the left hand, and

in the head of Medusa 23 o N. 23 o 2
In the same head, the one to the east 22 30 N. 21 o 4
In the same head, the one to the west 21 o N. 21 o 4
Still farther west of the foregoing 20 10 N. 22 15 4
In the right knee 38 10 N. 28 15 4
In the knee, to the west of the foregoing 37 10 N. 28 10 4
Of the two [stars] in the belly, the one to

the west 35 40 | N. 25 0 |4
The one to the east 37 20 | N 26 15 4
In the right hip 37 30 | N. | 24 30 |5
In the right calf 39 40 | N. | 28 45 |5
In the left hip 30 10 N. 21 40 | 4 brighter
In the left knee 32 o N. 19 50 |3
In the left leg 31 40 N. 14 45 3 brighter
In the left heel 24 30 N. 12 o 3 dimmer
At the top of the foot, on the left side 29 40 N. I o 3 brighter
26 stars: 2 of the 2nd magnitude, 5 of the 3rd, 16 of the 4th, 2 of the 5th, 1 cloudy
NEAR PERSEUS, OUTSIDE THE CONSTELLATION
East of the left knee 34 10 N. 31 o 5
North of the right knee 38 20 N. 31 o 5
West of the head of Medusa 18 o N. 20 40 dim

3 stars: 2 of the 5th magnitude, 1 dim
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REINSMAN OR CHARIOTEER
Of the two [stars] in the head, the one

farther south 55 50 N. 30 o 4
The one farther north 55 40 N. 30 50 | 4
The bright [star] in the left shoulder, called

“Capella” 78 20 | No| 22 30 |1
In the right shoulder 56 10 N. 20 o 2
In the right elbow 54 30 N. 15 15 4
In the right palm 56 10 N. 13 30 | 4 brighter
In the left elbow 45 20 N. 20 40 | 4 brighter
Of the goats, the one to the west 45 30 N. 18 o 4 dimmer
Of the goats in the left palm, the one to

the east 46 o N. 18 o 4 brighter
In the left calf 53 10 N. 10 10 | 3 dimmer
In the right calf, and at the tip of the

northern horn of the Bull 49 o N. 5 o 3 brighter
In the ankle 49 20 | N. 8 30 |5
In the buttock 49 40 | N. 2 20 |3
The small [star] in the left foot 24 o N. 10 20 6

14 stars: 1 of the first magnitude, 1 of the 2nd, 2 of the 3rd, 7 of the 4th, 2 of the 5th, 1 of the 6th

SERPENT CARRIER OR SNAKE HOLDER

In the head

Of the two [stars] in the right shoulder, the
one to the west

The one to the east

Of the two [stars] in the left shoulder, the
one to the west

The one to the east

In the left elbow

Of the two [stars] in the left hand, the one to
the west

The one to the east

In the right elbow

In the right hand, the one to the west

The one to the east

In the right knee

In the right shin

Of the four [stars] in the right foot, the one to
the west

The one to the east

The third one, to the east

The remaining one, to the east

Touching the heel

228

231
232

216
218
211

208
209
220
205
207
224
227

226
227
228
229
229

I0

20
20

40

40

20
20

40
40
30

20
40
20
10

30

zZ2zzzzz 2zZ ZZ Z

36

27
26

33
31
34

17
12
15
18
14

H O O H N

15
45

50
30

30

40
20
30
15

15
30
20
45

brighter

~

I

4
3
4
4 dimmer
4
3
3 brighter

4 brighter
4 brighter
4 brighter
5 brighter

5
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Constellations of the stars Degrees | Minutes Degrees | Minutes Magmtude

In the left knee 215 30 | N. I 50 |3
Of the three [stars] in the left leg, in a straight

line, the one to the north 215 o N. 5 20 | 5 brighter
The middle one of these [three] 214 o N. 3 0 |5
Of the three, the one farther south 213 10 N. 1 40 5 brighter
In the left heel 215 40 | N. o 40 |5
Touching the instep of the left foot 214 o S. o 45 4
24 stars: 5 of the 3rd magnitude, 13 of the 4th, 6 of the 5th
NEAR THE SERPENT CARRIER, OUTSIDE THE CONSTELLATION
Of the three [stars] to the east of the right

shoulder, the one farthest north 235 20 N. 28 10 4
The middle one of the three 236 o N. 26 20 | 4
The southern one of the three 233 40 N. 25 o 4
Farther east of the three 237 o N. 27 o 4
At a distance from the four, to the north 238 o N. 33 o 4
Therefore, 5 [stars] outside the constellation, all of the 4th magnitude
THE SERPENT OF THE SERPENT CARRIER
In the quadrilateral, in the cheek 192 10 N. 38 o 4
Touching the nostrils 201 o N. 40 o 4
In the temple 197 40 N. 35 o 3
At the beginning of the neck 195 20 | N 34 15 3
In the middle of the quadrilateral and in the

mouth 194 40 | N. | 37 15 |4
North of the head 201 30 | N. | 42 30 | 4
In the first curve of the neck 195 o N. 29 15 3
Of the three [stars] to the east, the one to the

north 198 o | N.| 26 30 | 4
The middle one of these 197 40 N. 25 20 |3
The most southerly of the three 199 40 N. 24 o 3
Of the two [stars] in the Snake Holder’s left

[hand], the one to the west 202 o N. 16 30 | 4
East of the foregoing in the same hand 2II 30 N. 16 15 5
East of the right hip 227 o N. 10 30 | 4
Of the two [stars] east [of the foregoing], the

one to the south 230 20 | N 8 30 | 4 brighter
The one to the north 231 10 N. 10 30 | 4
East of the right hand in the coil of the tail 237 o N. 20 o 4
East [of the foregoing] in the tail 242 o N. 21 10 4 brighter
At the tip of the tail 251 40 | No | 27 o |4
18 stars: 5 of the 3rd magnitude, 12 of the 4th, 1 of the 5th
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Constellations of the stars Degrees | Minutes Degrees | Minutes Magmtude

ARROW
At the tip 273 30 | N. | 39 20 | 4
Of the three [stars] in the shaft, the one to the

east 270 o N. | 39 0o |6
The middle one of these [three] 269 10 N. 39 50 |5
The western one of the three 268 o N. 39 o 5
In the notch 266 40 N. 38 45 5
5 stars: 1 of the 4th magnitude, 3 of the 5th, 1 of the 6th
EAGLE
In the middle of the head 270 30 N. 26 50 | 4
In the neck 268 1o | N.| 27 0 |3
In the shoulder blades, the bright [star] called

the “Eagle” 267 1o | N.| 29 10 | 2 brighter
Very near the foregoing, farther north 268 o N. 30 o 3 dimmer
In the left shoulder, the one to the west 266 30 N. 31 30 |3
The one to the east 269 20 N. 31 30 |5
In the right shoulder, the one to the west 263 o N. 28 40 5
The one to the east 264 30 N. 26 40 | s brighter
In the tail, touching the Milky Way 255 30 N. 26 30 |3
9 stars: 1 of the 2nd magnitude, 4 of the 3rd, 1 of the 4th, 3 of the 5th
NEAR THE EAGLE, OUTSIDE THE CONSTELLATION
South of the head, the one to the west 272 o N. 21 40 | 3
The one to the east 272 10 N. 29 10 |3
To the southwest of the right shoulder 259 20 | N. 25 o 4 brighter
To the south [of the foregoing] 261 30 N. 20 o 3
Farther south 263 o N. 15 30 |3
The westernmost of all [six stars outside the
constellation] 254 30 N. 18 10 3
6 stars outside the constellation: 4 of the 3rd magnitude, 1 of the 4th, and 1 of the 5th
DOLPHIN
Of the three [stars] in the tail, the one to the

west 281 o N. | 29 10 | 3 dimmer
Of the other two, the one farther north 282 o N. 29 o 4 dimmer
The one farther south 282 o N. 26 40 | 4
In the western side of the rhomboid, the one

farther south 281 so | N. | 32 o 3 dimmer
In the same side, the one to the north 283 30 N. 33 50 3 dimmer
In the eastern side, the one to the south 284 40 N. 32 o 3 dimmer
In the same side, the one to the north 286 50 N. 33 10 | 3 dimmer
Of the three [stars] between the tail and the

rhombus, the one farther south 280 50 N. 34 15 6
Of the other two toward the north, the one to

the west 280 50 N. 31 50 6
The one to the east 282 20 N. 31 30 | 6

10 stars, namely, 5 of the 3rd magnitude, 2 of the 4th, 3 of the 6th
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Constellations of the stars Degrees | Minutes Degrees | Minutes Magmtude

HORSE SEGMENT
Of the two [stars] in the head, the one to the

West 289 | 40 | N. | 20 30 | dim
The one to the east 292 20 N. 20 40 | dim
Of the two [stars] in the mouth, the one to

the West 289 40 | N. 25 30 | dim
The one to the east 291 o N. 25 o dim
4 stars, all dim
WINGED HORSE OR PEGASUS
In the open mouth 298 40 N. 21 30 | 3 brighter
Of the two [stars] close together in the head,

the one to the north 302 40 | N. 16 50 |3
The one farther south 301 20 N. 16 o 4
Of the two [stars] in the mane, the one farther|

South 314 40 | N. 15 o 5
The one farther north 313 50 N. 16 o 5
Of the two [stars] in the neck, the one to the

West 312 o | N. 18 o |3
The one to the east 313 50 N. 19 o 4
In the left hock 305 40 | N. | 36 30 | 4 brighter
In the left knee 311 o N. 34 15 4 brighter
In the right hock 317 o N. 41 10 | 4 brighter
Of the two [stars] close together in the chest,

the one to the west 319 30 N. 29 o 4
The one to the east 320 20 N. 29 30 | 4
Of the two [stars] in the right knee, the one to

the north 322 20 | N. | 35 o |3
The one farther south 321 50 N. 24 30 |5
Of the two [stars] in the body below the wing,

the one to the north 327 50 N. 25 40 | 4
The one farther south 328 20 | N. 25 o 4
In the shoulder blades and attachment of the

Wing 350 o N. 19 40 | 2 dimmer
In the right shoulder and top of the leg 325 30 N. 31 o 2 dimmer
At the tip of the wing 335 30 | N. 2 30 | 2 dimmer
In the midriff; also in the head of Andromeda| 341 10 N. 26 o 2 dimmer
20 stars, namely, 4 of the 2nd magnitude, 4 of the 3rd, 9 of the 4th, 3 of the 5th
ANDROMEDA
In the shoulder blades 348 40 N. 24 30 |3
In the right shoulder 3499 | 40 | N. | 27 o |4
In the left shoulder 347 40 N. 23 o 4
Of the three [stars] in the right arm, the one

farther south 347 o N. 32 o 4
The one farther north 348 o N. 33 30 | 4
The middle one of the three 348 20 N. 32 20 |3
Of the three [stars] at the tip of the right

hand, the one farther south 343 o N. 41 o 4
The middle one of these [three] 344 o N. 42 o 4

116

Nicolaus Copernicus. De Revolutionibus Orbium Ceelestium, Libri VI. Nuremberg, 1543.

THE WARNOCK LIBRARY




Longitude Latitude
Constellations of the stars Degrees | Minutes Degrees | Minutes Magmtude

The northern one of the three 345 30 N. 44 o 4
In the left arm 347 30 N. 17 30 | 4
In the left elbow 349 o N. 15 50 3
Of the three [stars] in the girdle, the one to

the south 357 o | N. 25 20 |3
The one in the middle 355 10 N. 30 o 3
The northern one of the three 355 20 N. 32 30 |3
In the left foot 10 10 N. 23 o 3
In the right foot 10 30 N. 37 20 | 4 brighter
To the south of these 8 30 N. 35 20 | 4 brighter
Of the two [stars] below the back of the knee,

the one to the north 5 40 N. 29 o 4
The one to the south 5 20 N. 28 o 4
In the right knee 5 30 N. 35 30 |3
Of the two [stars] in the robe or its train, the

one to the north 6 o N. 34 30 |5
The one to the south 7 30 N. 32 30 |5
At a distance from the right hand and outside

the constellation 5 o N. 44 o 3
23 stars, since [there are] 7 of the 3rd magnitude, 12 of the 4th, 4 of the 5th
TRIANGLE
In the vertex of the triangle 4 20 N. 16 30 3
Of the three [stars] in the base, the one to

the west 9 20 | N. | 20 40 |3
The one in the middle 9 30 N. 20 20 | 4
Of the three, the one to the east 10 10 N. 19 o 3

4 stars: 3 of the 3rd magnitude, 1 of the 4

Accordingly, in the northern region [there are] altogether 360 stars: 3 of the 1st magnitude,
18 of the 2nd, 81 of the 3rd, 177 of the 4th, 58 of the 5th, 13 of the 6th, 1 cloudy, 9 dim.

[I1:] Those which are in the Middle and near the Zodiac

RAM

Of the two [stars] in the horn, the one to the
west, and the first of all [the stars]

In the horn, the one to the east

Of the two [stars] in the open mouth, the one
to the north

The one farther south

In the neck

In the loins

At the beginning of the tail

Of the three [stars] in the tail, the one to the
West

The one in the middle

20
50
50
50
40

10
40

22 zZzzZ ZZ

A N NN [o=BaN|

N

20
20

40

30

50

40
30

3 dimmer
3

“»i vt Lt

~
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Venus
apogee
48%20°

Longitude

Latitude

Constellations of the stars Degrees | Minutes Degrees | Minutes Magmtude

Of the three, the one to the east 20 20 N. 1 50 4
In the hip 13 o N. I 0 |5
Behind the knee 53 20 S. I 30 |5
At the tip of the hind foot 8 10 S. 5 15 4 brighter
13 stars: 2 of the 3rd magnitude, 4 of the 4th, 6 of the 5th, 1 of the 6th
NEAR THE RAM, OUTSIDE THE CONSTELLATION
The bright [star] above the head 3 50 N. 10 o 3 brighter
Above the back, the farthest to the north 15 o N. 10 10 |4
Of the remaining three dim [stars], the one to

the north 14 40 | N. 2 40 |5
The one in the middle 13 o N. 10 40 | 5
Of these [three], the one to the south 12 30 N. 10 40 |5
5 stars: 1 of the 3rd magnitude, 1 of the 4th, 3 of the 5th
BULL
Of the four [stars] at the cut, the one farthest

North 19 40 S. 6 o |4
The second one, after the foregoing 19 20 S. 7 15 4
The third one 18 o S. 8 30 | 4
The fourth one, the farthest south 17 50 S. 9 15 4
In the right shoulder 23 o S. 9 30 |5
In the chest 27 o S. 8 o 3
In the right knee 30 o S. 12 40 | 4
In the right hock 26 20 S. 14 50 4
In the left knee 35 30 S. 10 o |4
In the left hock 36 20 S. 13 30 | 4
Of the Hyades, the 5 [stars] in the face which

are called the “Piglets,” the one in the

nostrils 32 o S. 5 45 | 3 dimmer
Between the foregoing and the northern eye 33 40 S. 4 15 3 dimmer
Between the same [star] and the southern eye | 34 10 S. o 50 | 3 dimmer
In that eye, the bright [star] called “Palili-

cium” by the Romans 36 o S. 5 10 |1
In the northern eye 35 10 S. 3 o 3 dimmer
Between the beginning of the southern horn

and the ear 40 30 S. 4 o 4
Of the two [stars] in the same horn, the one

Farther south 43 40 S. 5 o 4
The one farther north 43 20 S. 3 30 |5
At the tip of the same [horn] 50 30 S. 2 30 |3
At the beginning of the northern horn 49 o S. 4 o 4
At the tip of the same [horn], and also in the

right foot of the Reinsman 49 o N. 5 o 3
Of the two [stars] in the northern ear, the one

to the north 35 20 | N. 4 30 |5
Of these [two], the one to the south 35 o N. 4 o 5
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Of the two small [stars] in the neck, the one

to the west 30 20 | N. o 40 |5
The one to the east 32 20 | N I o 6
Of the western [stars] of the quadrilateral in

the neck, the one to the south 31 20 N. 5 o 5
The one to the north on the same side 32 10 N. 7 10 |5
The one to the south on the eastern side 35 20 N. 3 o 5
The one to the north on this side 35 o N. 5 o 5
Of the western side of the Pleiades, the north-

ern end [called] “Vergiliae” 25 30 | N. 4 30 |5
The southern end of the same side 25 50 N. 4 40 |3
The eastern, very narrow end of the Pleiades 27 o N. 5 20 |5
The small [star] of the Pleiades, at a distance

from the outermost 26 o N. 3 o 5

32 stars, not including the one at the tip of the northern horn: 1 of the 1st magnitude,

6 of the 3rd, 11 of the 4th, 13 of the 5th, 1 of the 6th

NEAR THE BULL, OUTSIDE THE CONSTELLATION

Below, between the foot and the shoulder 18 20 S. 17 30 | 4
Of the three [stars] near the southern horn,

the one to the west 43 20 S. 2 o 5
The middle one of the three 47 20 S. I 45 |5
The eastern one of the three 49 20 S. 2 o 5
Of the two [stars] below the tip of the same

horn, the one to the north 52 20 S. 6 20 5
The one to the south 52 20 S. 7 40 |3
Of the five [stars] below the northern horn,

the one to the west 50 20 N. 2 40 5
The second one to the east 52 20 N. I o 5
The third one to the east 54 20 N. I 20 |3
Of the remaining two, the one to the north 55 40 N. 3 20 |3
The one to the south 56 40 | N. I 15 5
11 stars outside the constellation: 1 of the 4th magnitude, 10 of the 5th
TWINS
In the head of the western Twin, Castor 76 40 N. 9 30 2
The yellowish [star] in the head of the eastern

Twin, Pollux 79 50 N. 6 15 2
In the left elbow of the western Twin 70 o N. 10 o 4
In the same arm 72 o N. 7 20 4
In the shoulder blades of the same Twin 75 20 N. 5 30 | 4
In the right shoulder of the same [Twin] 77 20 N. 4 50 4
In the left shoulder of the eastern Twin 8o o N. 2 40 | 4
In the right side of the western Twin 75 o N. 2 40 |3
In the left side of the eastern Twin 76 30 | N. 3 o 5
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In the left knee of the western Twin 66 30 | N. I 30 |3 it
In the left knee of the eastern [Twin] 71 35 S. 2 30 |3 e L _‘_,r'
In the left groin of the same [Twin] 75 o S. o 30 3 N . P
In the right joint of the same [Twin] 74 40 S. o 40 | 3
The western [star] in the foot of the western

Twin 60 o S. I 30 | 4 brighter
The eastern [star] in the same foot 61 30 S. 1 15 4
At the end of the foot of the western Twin 63 30 S. 3 30 | 4
At the top of the foot of the eastern [Twin] 65 20 S. 7 30 |3
At the bottom of the same foot 68 o S. 10 30 | 4
18 stars: 2 of the 2nd magnitude, 5 of the 3rd, 9 of the 4th, 2 of the 5th
NEAR THE TWINS, OUTSIDE THE CONSTELLATION
The western [star] at the top of the foot of the]

western Twin 57 30 S. o 40 | 4
The bright [star] west of the knee of the same

[Twin] 59 so | N. 5 50 | 4 brighter
West of the left knee of the eastern Twin 68 30 S. 2 15 5
Of the three [stars] east of the right hand of

the eastern [Twin], the one to the north| 81 40 S. 1 20 |5
The one in the middle 79 40 S. 3 20 |3
Of the three [stars] near the right arm, the

one to the south 79 20 S. 4 30 |5
The bright [star] east of the three 84 o S. 2 40 | 4

7 stars outside the constellation: 3 of the 4th magnitude, 4 of the 5th

CRAB

The middle [star] in the cloud in the chest; 93 40 N. o 40 cloudy
called “Praesepe”

Of the two western [stars] of the quadrilateral,| 91 o N. I 15 4 dimmer
the one to the north 91 20 S I 10 | 4 dimmer

The one to the south

Of the two eastern [stars] called the “Asses,” 93 40 N. 2 40 | 4 brighter
the one to the north 94 40 S. 10 | 4 brighter

The southern Ass 99 50 S. 5 30 | 4

In the southern claw or arm 91 40 N. II 50 | 4

In the northern arm 86 o N. 1 o 5

At the tip of the northern foot 90 30 S. 7 30 | 4 brighter

At the tip of the southern foot

9 stars: 7 of the 4th magnitude, 1 of the 5th, 1 cloudy
NEAR THE CRAB, OUTSIDE THE CONSTELLATION

«»

Above the elbow of the southern claw 103 o 40 | 4 dimmer

East of the tip of the same claw 105 o S. 5 40 | 4 dimmer
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Longitude Latitude
Constellations of the stars Degrees | Minutes Degrees | Minutes Magmtude

Of the two [stars] above the small cloud, the

one to the west 97 20 | N. 4 50 |5
East of the foregoing 100 20 N. 7 15 5
4 [stars] outside the constellation: 2 of the 4th magnitude, 2 of the 5th
LION
In the nostrils 101 40 | N. 10 o 4
In the open mouth 104 30 N. 7 30 | 4
Of the two [stars] in the head, the one to the

north 107 40 | N. 12 o 3
The one to the south 107 30 N. 9 30 | 3 brighter
Of the three [stars] in the neck, the one to the

north 13 30 | N. I o |3
The one in the middle 115 30 N. 8 30 |2
Of the three, the one to the south 114 o N. 4 30 3
In the heart; called “Little King” or

“Regulus” 115 50 N. o 10 |1
Of the two [stars] in the chest, the one to the

south 116 50 S. 1 50 | 4
Slightly to the west of the star in the heart 113 20 S. o 15 5
In the knee of the right foreleg 110 40 o o 5
In the right paw 117 30 S. 3 40 | 6
In the knee of the left foreleg 122 30 S. 4 10 | 4
In the left paw 115 50 S. 4 15 4
In the left armpit 2 | 30 | S o 10 |4
Of the three [stars] in the belly, the one to the

west 120 20 | N. 4 o 6
Of the two to the east, the one to the north 126 20 N. 5 20 |6
The one to the south 125 40 N. 2 20 |6
Of the two [stars] in the loins, the one to the

west 124 40 | N. 12 5 |5
The one to the east 127 30 N. 13 40 | 2
Of the two [stars] in the buttock, the one to

the north 127 40 | N. I 30 |5
The one to the south 129 40 N. 9 40 | 3
In the hind hip 133 40 N. 5 50 3
In the bend [of the leg] 135 o N. I 15 4
In the joint of the hind [leg] 135 o S. o 50 | 4
In the hind foot 134 o S. 3 o |5
At the tip of the tail 137 50 N. II 50 | 1 dimmer
27 stars: 2 of the 1st magnitude, 2 of the 2nd, 6 of the 3rd, 8 of the 4th, 5 of the 5th, 4 of the 6th
NEAR THE LION, OUTSIDE THE CONSTELLATION
Of the two [stars] above the back, the one to

the west 119 20 | N. 13 20 |3
The one to the east 121 30 N. 15 30 |5
Of the three [stars] below the belly, the one to

the north 129 50 N. I 10 | 4 dimmer
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Constellations of the stars Degrees | Minutes Degrees | Minutes Magmtude

The one in the middle 130 30 S. 30 |5
Of the three, the one to the south 132 20 S. 2 40 |3
In the cloudy formation between the outer-

most [stars] of the Lion and the Bear,

the star farthest to the north, called

“Berenice’s Hair” 138 10 N. 30 o brilliant
Of the two [stars] to the south, the one to the

west 133 so | N. | 25 o | dim
The one to the east, in the shape of an ivy

leaf 141 so | N. 25 30 | dim

Outside the constellation, 8 [stars]: 1 of the 4th magnitude, 4 of the 5th, 1 brilliant, 2 dim

VIRGIN
Of the two [stars] at the top of the head, the

one to the west and south 139 40 | N. 4 15
The one to the east and farther north 140 20 N. 5 40
Of the two [stars] in the face, the one to the

north 144 o N. 8 o
The one to the south 143 30 N. 5 30
At the tip of the left, southern wing 142 20 N. 6 o
Of the four [stars] in the left wing, the one to

the west 151 35 N. I 10
The second one, to the east 156 30 N. 2 50
The third 160 30 | N. 2 50
The last of the four, to the east 164 20 N. 1 40
In the right side below the girdle 157 40 N. 8 30
Of the three [stars] in the right, northern

wing, the one to the west 151 30 N. 13 50
Of the other two, the one to the south 153 30 N. II 40
Of these [two], the one to the north, called

“Vindemiator” 155 30 N. 15 10
In the left hand; called the “Spike” 170 o S. 2 o
Below the girdle and in the right buttock 168 10 N. 8 40
Of the western [stars] in the quadrilateral in

the left hip, the one to the north 169 40 | N. 2 20
The one to the south 170 20 N. o 10
Of the two eastern [stars], the one to the

north 173 20 | N. 1 30
The one to the south 171 20 N. o 20
In the left knee 175 o N. I 30
On the eastern [side] of the right hip 171 20 N. 8 30
In the gown, the one in the middle 180 o N. 7 30
The one to the south 180 40 N. 2 40
The one to the north 181 40 N. II 40
In the left, southern foot 183 20 N. o 30
In the right, northern foot 186 o N. 9 50

W A W W

v

brighter

W

[N %!

[T O N R RV

26 stars: 1 of the 1st magnitude, 7 of the 3rd, 6 of the 4th, 10 of the 5th, 2 of the 6th
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NEAR THE VIRGIN, OUTSIDE THE CONSTELLATION
Of the three [stars] in a straight line below the

left arm, the one to the west 158 o S. 3 30 |5
The one in the middle 162 20 S. 3 30 |5
The one to the east 165 35 S. 3 20 |3
Of the three [stars] in a straight line below the

Spike, the one to the west 170 30 S. 7 20 | 6
The one in the middle, a double [star] 171 30 S. 8 20 |5
Of the three, the one to the east 173 20 S. 7 50 6
6 [stars] outside the constellation: 4 of the 5th magnitude, 2 of the 6th
CLAWS
Of the two [stars] at the tip of the southern

claw, the bright one 191 20 N. o 40 | 2 brighter
The dimmer one to the north 190 20 | N. 2 30 |5
Of the two [stars] at the tip of the northern

claw, the bright one 195 30 | N. 8 30 |2
The dimmer one, west of the foregoing 191 o N. 8 30 |3
In the middle of the southern claw 197 20 N. I 40 | 4
In the same [claw], the one to the west 194 40 N. I 15 4
In the middle of the northern claw 200 50 N. 3 45 | 4
In the same [claw, the star] to the east 206 20 N. 4 30 4
8 stars: 2 of the 2nd magnitude, 4 of the 4th, 2 of the 5th
NEAR THE CLAWS, OUTSIDE THE CONSTELLATION
Of the three [stars] north of the northern

claw, the one to the west 199 30 N. 9 o 5
Of the two to the east, the one to the south 207 o N. 6 40 | 4
Of these [two], the one to the north 207 40 N. 9 15 4
Of the three [stars] between the claws, the

one to the east 205 50 N. 5 30 |6
Of the other two to the west, the one to the north| 203 40 N. 2 o 4
The one to the south 204 30 | N. I 30 |5
Of the three [stars] below the southern claw,

the one to the west 196 20 S. 7 30 |3
Of the other two to the east, the one to the north | 204 30 S. 8 10 |4
The one to the south 205 20 S. 9 40 | 4
9 [stars] outside the constellation: 1 of the 3rd magnitude, 5 of the 4th, 2 of the 5th, 1 of the 6th
SCORPION
Of the three bright [stars] in the forehead, the

one to the north 209 40 N. I 20 | 3 brighter
The one in the middle 209 o S. I 40 |3
Of the three, the one to the south 209 o S. 5 o 3
Farther south and in the foot 209 20 S. 7 50 |3
Of the two [stars] close together, the bright

one to the north 210 20 | N. 1 40 | 4
The one to the south 210 40 | N. o 30 | 4
Of the three bright [stars] in the body, the one

to the west 214 o S. 3 45 |3
The reddish [star] in the middle, called

“Antares” 216 o S. 4 o 2 brighter
Of the three, the one to the east 217 50 S. 5 30 |3
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Of the two [stars] in the last claw, the one to

the west 212 40 S. 6 0 |3
The one to the east 213 50 S. 6 40 |5
In the first segment of the body 221 50 S. I o 3
In the second segment 222 10 S. 15 o 4
Of the double [star] in the third [segment],

the one to the north 223 20 S. 18 40 | 4
Of the double [star], the one to the south 223 30 S. 18 o 3
In the fourth segment 226 30 S. 19 30 |3
In the fifth [segment] 231 30 S. 18 50 |3
In the sixth segment 233 50 S. 16 40 |3
In the seventh [segment], the star next to the

sting 232 20 S. 15 0 |3
Of the two [stars] in the sting, the one to the

east 230 50 S. 13 20 |3
The one to the west 230 20 S. 13 30 | 4
21 stars: 1 of the 2nd magnitude, 13 of the 3rd, 5 of the 4th, 2 of the 5th
NEAR THE SCORPION, OUTSIDE THE CONSTELLATION
The cloudy [star], east of the sting 234 30 S. 13 15 cloudy
Of the two [stars] north of the sting, the one

to the west 228 50 S. 6 0 |5
The one to the east 232 50 S. 4 0 |5
3 [stars] outside the constellation: 2 of the 5th magnitude, 1 cloudy
ARCHER
At the tip of the arrow 237 50 S. 6 30 |3
In the grip of the left hand 241 o S. 6 30 3
In the southern part of the bow 241 20 S. 10 50 3
Of the two [stars] in the northern [part of the

bow], the one to the south 242 20 S. 1 30 |3
Farther north at the tip of the bow 240 o N. 2 50 4
In the left shoulder 248 40 S. 3 10 3
To the west of the foregoing, in the arrow 246 20 S. 3 50 4
The double, cloudy [star] in the eye 248 30 N. o 45 cloudy
Of the three [stars] in the head, the one to the

west 249 o N. 2 0 |4
The one in the middle 251 o N. I 30 | 4 brighter
The one to the east 252 30 N. 2 o 4
Of the three [stars] in the northern [part of

the] garment, the one farther south 254 40 N. 2 50 4
The one in the middle 255 40 N. 4 30 | 4
Of the three, the one to the north 256 10 N. 6 30 | 4
The dim [star] east of the three [foregoing] 259 o N. 5 30 6
Of the two [stars] in the southern [part of

the] garment, the one to the north 262 50 N. 5 50 5
The one to the south 261 o N. 2 o 6
In the right shoulder 255 40 S. I 50 5
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In the right elbow 258 10 S. 2 50 5
In the shoulder blades 253 20 S. 2 30 |5
In the broad of the back 251 o S. 4 30 | 4 brighter
Below the armpit 249 40 S. 6 45 3
In the hock of the left front [leg] 251 o S. 23 o 2
In the knee of the same leg 250 20 S. 18 o 2
In the hock of the right front [leg] 240 o S. 13 o 3
In the left shoulder blade 260 40 S. 13 30 |3
In the knee of the right front [leg] 260 o S. 20 10 3
Of the four [stars] on the northern side at the
beginning of the tail, the one to the west| 261 o S. 4 50 5
On the same side, the one to the east 261 10 S. 4 50 5
On the southern side, the one to the west 261 50 S. 5 50 5
On the same side, the one to the east 263 o S. 6 30 5

31 stars: 2 of the 2nd magnitude, 9 of the 3rd, 9 of the 4th, 8 of the 5th, 2 of the 6th, 1 cloudy

GOAT

Of the three [stars] in the western horn, the
one to the north

The one in the middle

Of the three, the one to the south

At the tip of the eastern horn

Of the three [stars] in the open mouth, the
one to the south

Of the other two, the one to the west

The one to the east

Below the right eye

Of the two [stars] in the neck, the one to the
north

The one to the south

In the right knee

In the left, bent knee

In the left shoulder

Of the two [stars] close together below the
belly, the one to the west

The one to the east

Of the three [stars] in the middle of the body,
the one to the east

Of the two others to the west, the one to the
south

Of these [two], the one to the north

Of the two [stars] in the back, the one to the
west

The one to the east

Of the two [stars] in the southern [part of the]
rib cage, the one to the west
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The one to the east 288 20 S. 4 30 | 4
Of the two [stars] at the beginning of the tail,

the one to the west 288 10 S. 2 10 3
The one to the east 289 40 S. 2 o 3
Of the four [stars] in the northern part of the

tail, the one to the west 290 10 S. 2 20 | 4
Of the other three, the one to the south 292 o S. 5 o 5
The one in the middle 291 o S. 2 50 |5
The one to the north, at the tip of the tail 292 o N. 4 20 5
28 stars: 4 of the 3rd magnitude, 9 of the 4th, 9 of the 5th, 6 of the 6th
WATER BEARER
In the head 293 40 | N. 15 45 |5
In the right shoulder, the brighter one 299 44 N. I o 3
The dimmer one 298 30 N. 9 40 |5
In the left shoulder 290 o N. 8 50 3
Below the armpit 290 40 N. 6 15 5
Of the three [stars] in the garment below the

left hand, the one to the east 280 o N. 5 30 |3
The one in the middle 279 30 N. 8 o 4
Of the three, the one to the west 278 o N. 8 30 3
In the right elbow 302 50 N. 8 45 3
In the right hand, the one to the north 303 o N. 10 45 | 3
Of the other two to the south, the one to the

west 305 20 | N. 9 o |3
The one to the east 306 40 N. 8 30 |3
Of the two [stars] close together in the right

hip, the one to the west 299 30 N. 3 o 4
The one to the east 300 20 N. 2 0 |5
In the right buttock 302 o S. o 50 4
Of the two [stars] in the left buttock, the one

to the south 295 o S. 1 40 | 4
The one farther north 295 30 | N. 4 o 6
In the right shin, the one to the south 305 o S. 7 30 |3
The one to the north 304 40 S. 5 o 4
In the left hip 301 o S. 5 40 |5
Of the two [stars] in the left shin, the one to

the south 300 40 S. 10 o 5
The one to the north, below the knee 302 10 S. 9 o 5
In the water poured by the hand, the first

[star] 303 20 | N. 2 o 4
To the east, farther south 308 10 N. o 10 4
To the east, in the first curve of the water 311 o S. I 10 4
To the east of the foregoing 313 20 S. o 30 | 4
In the second curve, the one to the south 313 50 S. I 40 | 4
Of the two [stars] to the east, the one to the

north 312 30 S. 3 30 | 4
The one to the south 312 50 S. 4 10 |4
At a distance to the south 314 10 S. 8 15 5
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Of the two [stars] close together east of the

foregoing, the one to the west 316 o S. II o 5
The one to the east 316 30 S. 10 50 |5
Of the three [stars] in the third curve of the

water, the one to the north 315 o S. 4 o |5
The one in the middle 316 o S. 14 45 |5
Of the three, the one to the east 316 30 S. 15 40 |5
Of the three [stars] to the east in a similar

formation, the one to the north 310 20 S. 14 10 |4
The one in the middle 310 50 S. 15 o |4
Of the three, the one to the south 311 40 S. 15 45 | 4
Of the three [stars] in the last curve, the one

to the west 305 10 S. 4 50 |4
Of the two [stars] to the east, the one to the

south 306 o S. 15 20 | 4
The one to the north 306 | 30 S. 4 o |4
The last [star] in the water; also in the mouth

of the Southern Fish 300 | 20 S. 23 o |1
42 stars: 1 of the 1st magnitude, 9 of the 3rd, 18 of the 4th, 13 of the 5th, 1 of the 6th
NEAR THE WATER BEARER, OUTSIDE THE CONSTELLATION
Of the three [stars] east of the curve in the

water, the one to the west 320 o S. 15 30 | 4
Of the other two, the one to the north 323 o S. 14 20 | 4
Of these [two], the one to the south 322 20 S. 18 15 4
3 stars: brighter than the 4th magnitude
FISHES
The western fish: In the mouth 315 o N. 9 15 4
Of the two [stars] in the back of the head, the

one to the south 317 30 | N. 7 30 | 4 brighter
The one to the north 321 30 | N. 9 30 | 4
Of the two [stars] in the back, the one to the west | 319 20 | N. 9 20 | 4
The one to the east 324 o N. 7 30 | 4
In the belly, the one to the west 319 20 | N. 4 30 | 4
The one to the east 323 o N. 2 30 | 4
In the tail of the same fish 329 20 | N. 6 20 | 4
On its line, the first [star] from the tail 334 20 | N. 5 45 | 6
The one to the east 336 20 | N. 2 45 | 6
Of the three bright [stars] east of these [two

foregoing], the one to the west 340 30 | N. 2 15 4
The one in the middle 343 so | N. I 0 |4
The one to the east 346 20 S. I 20 | 4
Of the two small [stars] in the bend, the one

to the north 345 40 S. 2 o |6
The one to the south 346 20 S. 5 o |6
Of the three [stars] east of the bend, the one

to the west 350 20 S. 2 20 | 4
The one in the middle 352 o S. 4 40 | 4
The one to the east 354 o S. 7 45 | 4
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In the interwining of both lines 356 o S. 8 30 |3 -
On the northern line, to the west of the in- :__ =
terwining 354 o S. 4 20 | 4 st i L
Of the three [stars] east of the foregoing, the
one to the south 353 30 N. I 30 |5
The one in the middle 353 40 N. 5 20 |3
Of the three, the one to the north and the last
on the line 353 50 N. 9 o 4
The eastern fish:
Of the two [stars] in the mouth, the one to
the north 355 20 | N | a1 45 |5
The one to the south 355 o N. 21 30 |5
Of the three small [stars] in the head, the one
to the east 352 o N. | 20 o 6
The one in the middle 351 o N. 19 50 | 6
Of the three, the one to the west 350 20 N. 23 o 6
Of the three [stars] in the southern fin, the
one to the west, near the left elbow of
Andromeda 349 o N. 14 20 | 4
The one in the middle 349 40 | N. 13 o 4
Of the three, the one to the east 351 o N. 12 o 4
Of the two [stars] in the belly, the one to the
north 355 30 | N.| 17 o |4
The one farther south 352 40 | N. 15 20 | 4
In the eastern fin, near the tail 353 20 N. II 45 | 4
34 stars: 2 of the 3rd magnitude, 22 of the 4th, 3 of the 5th, 7 of the 6th
NEAR THE FISHES, OUTSIDE THE CONSTELLATION
On the northern side of the quadrilateral
below the western fish, the one to the west| 324 30 S. 2 40 | 4
The one to the east 325 35 S. 2 30 | 4
On the southern side, the one to the west 324 o S. 5 50 | 4
The one to the east 325 40 S. 5 30 | 4

4 [stars] outside the constellation, of the 4th magnitude

Accordingly, in the zodiac there are altogether 346 stars, namely, 5 of the 1st magnitude,
9 of the 2nd, 64 of the 3rd, 133 of the 4th, 105 of the 5th, 27 of the 6th, 3 cloudy.

In addition to [this] number, there is also the Hair, which, as I remarked above, was called
“Berenice’s Hair” by the astronomer Conon.

[II1:] Those which are in the Southern Region

WHALE
At the tip of the nostril I o S. 7 45 | 4
Of the three [stars] in the jaw, the one to the

east I o S. II 20 |3
The middle one, in the middle of the mouth 6 o S. II 30 |3
The western one of the three, in the cheek 3 50 S. 14 o 3
In the eye 4 o S. 8 10 4
In the hair, to the north 5 30 S. 6 20 | 4
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In the mane, to the west 1 o S. 4 10 4
Of the four [stars] in the chest, the northern

one of those to the west 355 20 S. 24 30 | 4
The southern one 356 40 S. 28 o 4
Of those to the east, the one to the north o o S. 25 10 4
The one to the south o 20 S. 27 30 |3
Of the three [stars] in the body, the one in the

middle 345 20 S. 25 20 |3
The one to the south 346 20 S. 30 30 | 4
Of the three, the one to the north 348 20 S. 20 o 3
Of the two [stars] near the tail, the one to the

east 343 o S. 15 20 |3
The one to the west 338 20 S. 15 40 | 3
Of the quadrilateral in the tail, of the [stars]

to the east, the one to the north 335 o S. II 40 |5
The one to the south 334 o S. 13 40 | 5
Of the remaining [stars] to the west, the one

to the north 332 40 S. 13 o |5
The one to the south 332 20 S. 14 o 5
At the northern tip of the tail 327 40 S. 9 30 |3
At the southern tip of the tail 329 o S. 20 20 |3
22 stars: 10 of the 3rd magnitude, 8 of the 4th, 4 of the 5th
ORION
The cloudy [star] in the head 50 20 S. 16 30 | cloudy
The bright reddish [star] in the right shoulder| 55 20 S. 17 o I
In the left shoulder 43 40 S. 7 30 | 2 brighter
East of the foregoing 48 20 S. 18 o 4 dimmer
In the right elbow 57 40 S. 14 30 4
In the right forearm 59 40 S. I 50 6
Of the four [stars] in the right hand, of those

to the south, the one to the east 59 50 S. 10 40 | 4
The one to the west 59 20 S. 9 45 | 4
On the northern side, the one to the east 60 40 S. 8 15 6
On the same side, the one to the west 59 o S. 8 15 6
Of the two [stars] in the club, the one to the

west 55 o S. 3 45 |5
The one to the east 57 40 S. 3 15 5
Of the four [stars] in a straight line in the

back, the one to the east 50 50 S. 19 40 | 4
The second, to the west 49 40 S. 20 o 6
The third, to the west 48 40 S. 20 20 6
In the fourth place, to the west 47 30 S. 20 30 |5
Of the nine [stars] in the shield, the farthest

north 43 50 S. 8 o |4
The second 42 40 S. 8 10 4
The third 41 20 S. 10 5 |4
The fourth 39 40 S. 12 50 | 4
The fifth 38 30 S. 14 5 |4
The sixth 37 50 S. 15 50 |3

129

Nicolaus Copernicus. De Revolutionibus Orbium Ceelestium, Libri VI. Nuremberg, 1543.

THE WARNOCK LIBRARY

page 58r



Longitude Latitude

page 58v
Constellations of the stars Degrees | Minutes Degrees | Minutes Magmtude

The seventh 38 10 S. 7 0 |3
The eighth 38 40 S. 20 20 |3
The remaining one of these, the farthest

south 39 40 S. 21 30 |3
Of the three bright [stars] in the belt, the one

to the west 48 40 S. 24 10 |2
The one in the middle 50 40 S. 24 50 2
Of the three [stars] in a straight line, the one

to the east 52 40 S. 25 30 |2
In the hilt of the sword 47 10 S. 25 50 3
Of the three [stars] in the sword, the one to

the north 50 10 S. 28 40 | 4
The one in the middle 50 o S. 29 30 |3
The one to the south 50 20 S. 29 50 | 3 dimmer
Of the two [stars] at the tip of the sword, the

one to the east 5I o S. 30 30 | 4
The one to the west 49 30 S. 30 50 | 4
The bright [star] in the left foot; also in the

River 42 30 S. 31 30 |1
In the left shin 44 20 S. 30 15 | 4 brighter
In the left heel 46 40 S. 31 10 |4
In the right knee 53 30 S. 33 30 |3

38 stars: 2 of the 1st magnitude, 4 of the 2nd, 8 of the 3rd, 15 of the 4th, 3 of the 5th, 5 of the 6th,
and 1 cloudy

RIVER
Beyond the left foot of Orion, at the begin-

ning of the River 41 40 S. 31 50 4
In the bend at Orion’s leg, the one farthest north| 42 10 S. 28 15 4
Of the two [stars] east of the foregoing, the

one to the east 41 20 S. 29 50 | 4
The one to the west 38 o S. 28 15 4
Of the next two, the one to the east 36 30 S. 25 15 4
The one to the west 33 30 S. 25 20 | 4
Of the three after the foregoing, the one to

the east 29 40 S. 26 o |4
The one in the middle 29 o S. 27 o 4
Of the three, the one to the west 26 10 S. 27 50 4
Of the four at a distance, the one to the east 20 20 S. 32 50 3
West of the foregoing 18 o S. 31 o 4
The third one, to the west 17 30 S. 28 50 |3
Of all four, the [farthest] west 15 30 S. 28 o 3
Of four [other stars], once more in like

manner, the one to the east 10 30 S. 25 30 |3
West of the foregoing 8 10 S. 23 50 4
Still farther west than the foregoing 5 30 S. 23 10 3
Of these four, the farthest west 3 50 S. 23 15 4
In the bend of the River, touching the chest of]

the Whale 358 30 S. 32 0 |4
East of the foregoing 359 10 S. 34 50 | 4
Of the three [stars] to the east, the one to the west 2 10 S. 38 30 | 4
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The one in the middle 7 10 S. 38 0 |4
Of the three, the one to the east 10 50 S. 39 o 5
Of the two western [stars] in the quadrilateral,

the one to the north 14 40 S. 41 30 4
The one to the south 14 50 S. 42 30 | 4
On the eastern side, the one to the west 15 30 S. 43 20 | 4
Of these four, the one to the east 18 o S. 43 20 4
Toward the east, of the two [stars] close to-

gether, the one to the north 27 30 S. 50 20 | 4
The one farther south 28 20 S. 51 45 | 4
Of the two [stars] in the bend, the one to the

east 21 30 S. 53 50 | 4
The one to the west 19 10 S. 53 0 |4
Of the three [stars] in the remaining distance,

the one to the east I 10 S. 53 o 4
The one in the middle 8 10 S. 53 30 | 4
Of the three, the one to the west 5 10 S. 52 o 4
The bright [star] at the end of the River 353 30 S. 53 30 |1
34 stars: 1 of the 1st magnitude, 5 of the 3rd, 27 of the 4th, 1 of the 5th
HARE
Of the quadrilateral in the ears, of the western

[stars] the one to the north 43 o S. 35 o 5
The one to the south 43 10 S. 36 30 |5
On the eastern side, the one to the north 44 40 S. 35 30 |3
The one to the south 44 40 S. 36 40 |3
In the chin 42 30 S. 39 40 | 4 brighter
At the end of the left forefoot 39 30 S. 45 15 4 brighter
In the middle of the body 48 50 S. 41 30 3
Below the belly 48 10 S. 44 20 |3
Of the two [stars] in the hind feet, the one to

the north 54 20 S. 44 o 4
The one farther south 52 20 S. 45 50 | 4
In the loins 53 20 S. 38 20 | 4
At the tip of the tail 56 o S. 38 0 |4
12 stars: 2 of the 3rd magnitude, 6 of the 4th, 4 of the 5th
DOG
The most brilliant [star], in the mouth, called

the “Dog Star” 71 o S. 39 10 1 brightest
In the ears 73 o S. 35 o 4
In the head 74 40 S. 36 30 |5
Of the two [stars] in the neck, the one to the

north 76 40 S. 37 45 | 4
The one to the south 78 40 S. 40 o 4
In the chest 73 50 S. 42 30 |5
Of the two [stars] in the right knee, the one to

the north 69 30 S. 41 5 |5
The one to the south 69 20 S. 42 30 |5
At the tip of the forefoot 64 20 S. 41 20 |3
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Of the two [stars] in the left knee, the one to

the west 68 o S. 46 30 |5
The one to the east 69 30 S. 45 50 |5
Of the two [stars] in the left shoulder, the one

to the east 78 o S. 46 o 4
The one to the west 75 o S. 47 o 5
In the left hip 80 o S. 48 45 3 dimmer
Below the belly, between the thighs 77 o S. 51 30 |3
In the instep of the right foot 76 20 S. 55 0 |4
At the tip of that foot 77 o S. 55 40 | 3
At the tip of the tail 85 30 S. 50 30 | 3 dimmer
18 stars: 1 of the 1st magnitude, 5 of the 3rd, 5 of the 4th, 7 of the 5th
NEAR THE DOG, OUTSIDE THE CONSTELLATION
North of the Dog’s head 72 50 S. 25 15 4
In a straight line below the hind feet, [the

star] to the south 63 20 S. 60 30 | 4
The one farther north 64 40 S. 58 45 | 4
Still farther north than the foregoing 66 20 S. 57 o 4
Of these four, the last [star], farthest north 67 30 S. 56 o 4
Of the three [stars] almost in a straight line to

the west, the one to the west 50 20 S. 55 30 | 4
The one in the middle 53 40 S. 57 40 | 4
Of the three, the one in the east 55 40 S. 59 30 | 4
Of the two bright [stars] below the foregoing,

the one to the east 52 20 S. 59 40 | 2
To the west 49 20 S. 57 40 | 2
The last one, farther south than the afore-

mentioned 45 30 S. 59 30 | 4
11 stars: 2 of the 2nd magnitude, 9 of the 4th
LITTLE DOG OR PROCYON
In the neck 78 20 S. 14 o 4
The bright star in the thigh: Procyon or the

Little Dog 82 30 | S 16 10 |1
2 [stars]: 1 of the 1st magnitude, 1 of the 4th
ARGO OR SHIP
Of the two [stars] at the end of the ship, the

one to the west 93 40 S. 42 40 |5
The one to the east 97 40 S. 43 20 |3
Of the two [stars] in the stern, the one to the

north 92 10 S. 45 o |4
The one farther south 92 10 S. 46 o 4
West of the two [foregoing] 88 40 S. 45 30 | 4
The bright [star] in the middle of the shield 89 40 S. 47 5 | 4
Of the three [stars] below the shield, the one

to the west 88 40 S. 49 45 | 4
The one to the east 92 40 S. 49 50 | 4
Of the three, the one in the middle 91 50 S. 49 15 4
At the end of the rudder 97 20 S. 49 50 | 4
Of the two [stars] in the keel of the stern, the

one to the north 87 20 S. 53 o 4
The one to the south 87 20 S. 58 30 |3
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In the deck of the stern, the one to the north 93 30 S. 55 30 |5
Of the three [stars] in the same deck, the one
to the west 95 30 S. 58 30 |5
The one in the middle 96 40 S. 57 5 | 4
The one to the east 99 50 S. 57 45 | 4
The bright [star] to the east in the crossbank | 104 30 S. 58 20 2
Of the two dim [stars] below the foregoing,
the one to the west 101 30 S. 60 o |5
The one to the east 104 | 20 S. 59 20 |3
Of the two [stars] above the aforementioned
bright [star], the one to the west 106 30 S. 56 40 |5
The one to the east 107 40 S. 57 o 5
Of the three [stars] in the small shields and
the foot of the mast, the one to the north | 119 o S 51 30 | 4 brighter
The one in the middle 119 30 S. 55 30 | 4 brighter
Of the three, the one to the south 1y 20 S. 57 10 |4
Of the two [stars] close together below the
foregoing, the one to the north 122 30 S. 60 o |4
The one farther south 122 20 S. 61 15 | 4
Of the two [stars] in the middle of the mast,
the one to the south 3 30 S. 3 30 | 4
The one in the north m2 40 S. 49 o 4
Of the two [stars] at the top of the sail, the
one to the west 111 20 S. 43 20 | 4
The one to the east 112 20 S. 43 30 | 4
Below the third [star], east of the shield 98 30 S. 54 30 | 2 dimmer
In the juncture of the deck 100 | 50 S. 3 5 | 2
Between the oars in the keel 95 o S. 63 o 4
The dim [star] east of the foregoing 102 20 S. 64 30 | 6
The bright [star] east of the foregoing, in the
Deck 3 20 S. 63 50 |2
The bright [star] farther south, below the
Keel 121 50 S. 69 40 | 2
Of the three [stars] east of the foregoing, the
one to the west 128 30 S. 65 40 | 3
The one in the middle 134 40 S. 65 50 |3
The one to the east 139 20 S. 65 50 | 2
Of the two [stars] to the east, at the juncture,
the one to the west 144 20 S. 62 50 |3
The one to the east 15T 20 S. 62 5 |3
In the northern, western oar, the star to the
West 57 20 S. 65 50 | 4 brighter
The one to the east 73 30 S. 65 40 | 3 brighter
In the remaining oar, [the star] to the west:
Canopus 70 30 S. 75 o |1
The remaining [star], east of the foregoing 82 20 S. 71 50 | 3 brighter
45 stars: 1 of the 1st magnitude, 6 of the 2nd, 8 of the 3rd, 22 of the 4th, 7 of the 5th, 1 of the 6th
HYDRA
Of the five [stars] in the head, [and] of the
two to the west, the one to the south, in|
the nostrils 97 20 S. 15 o 4
Of the two, the one to the north, in the eye 98 40 S. 13 40 4
Of the two to the east, the one to the north, inl
the back of the head 99 o S. I 30 | 4
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o
Of these, the one to the south, in the open : B
mouth 98 50 S. 14 45 | 4 wganll =",
East of all the foregoing, in the cheek 100 50 S. 12 15 4 e
Of the two [stars] in the beginning of the
neck, the one to the west 103 40 S. I 50 5
The one to the east 106 40 S. 13 30 | 4
Of the three [stars] in the bend of the neck,
the one in the middle 11 40 S. 15 20 | 4
East of the foregoing 114 o S. 14 50 4
The farthest south 111 40 S. 17 10 | 4
To the south, of the two [stars] close together,
the dim one to the north 112 30 S. 19 45 6
The bright one of these, to the east and to the
south 3 20 S. 20 30 |2
Of the three [stars] east of the bend in the
neck, the one to the west 119 20 S. 26 30 | 4
The one to the east 124 30 S. 23 15 4
The one in the middle of these [three] 122 o S. 26 o 4
Of the three [stars] in a straight line, the one
to the west 131 20 S. 24 30 |3
The one in the middle 133 20 S. 23 o 4
The one to the east 136 20 S. 22 10 |3
Of the two [stars] below the bottom of the
Cup, the one to the north 144 50 S. 25 45 4
The one to the south 145 40 S. 30 10 | 4
In the triangle east of the foregoing, the one
to the west 155 30 S. 31 20 | 4
Of these, the one to the south 157 50 S. 34 10 4
Of the same three [stars], the one to the east 159 30 S. 31 40 | 3
East of the Crow, next to the tail 173 20 S. 13 30 | 4
At the tip of the tail 186 | 50 S. 17 30 | 4

25 stars: 1 of the 2nd magnitude, 3 of the 3rd, 19 of the 4th, 1 of the 5th, 1 of the 6th
NEAR HYDRA, OUTSIDE THE CONSTELLATION

South of the head 96 o S. 23 15 |3
East of the [stars] in the neck 124 20 S. 26 o 3

2 [stars] outside the constellation, of the 3rd magnitude

cup
In the bottom of the cup; also in Hydra 139 40 S. 23 o 4
Of the two [stars] in the middle of the cup,
the one to the south 146 o S. 19 30 | 4
Of these, the one to the north 143 30 S. 18 o 4
In the southern edge of the lip 150 20 S. 18 30 | 4 brighter
In the northern edge 142 40 S. 13 40 | 4
In the southern handle 152 30 S. 16 30 | 4 dimmer
In the northern handle 145 o S. II 50 | 4

7 stars of the 4th magnitude
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CROW
In the beak; also in Hydra 158 40 S. 21 30 3
In the neck 157 40 S. 19 40 |3
In the breast 160 o S. 18 10 5
In the right, western wing 160 50 S. 14 50 3
Of the two [stars] in the eastern wing, the one

to the west 160 o S. 2 30 |3
The one to the east 161 20 S. II 45 | 4
At the tip of the foot; also in Hydra 163 50 S. 18 10 |3
7 stars: 5 of the 3rd magnitude, 1 of the 4th, 1 of the 5th
CENTAUR
Of the four [stars] in the head, the one

farthest south 183 50 S. 21 20 |5
Farther north 183 20 S. 13 50 5
Of the two in the middle, the one to the west | 182 30 S. 20 30 |3
The one to the east; the last of the four 183 20 S. 20 o 5
In the left, western shoulder 179 30 S. 25 30 |3
In the right shoulder 189 o S. 22 30 |3
In the left side of the back 182 30 S. 17 30 | 4
Of the four [stars] in the shield, the northern

one of the two to the west 191 30 S. 22 30 | 4
The southern one 192 30 S. 23 45 | 4
Of the remaining two, the one at the top of

the shield 195 20 S. 18 5 |4
The one farther south 196 50 S. 20 50 | 4
Of the three [stars] in the right side, the one

to the west 186 40 S. 28 20 | 4
The one in the middle 187 20 S. 29 20 | 4
The one to the east 188 30 S. 28 o 4
In the right arm 189 40 S. 26 30 | 4
In the right elbow 196 10 S. 25 15 3
At the tip of the right hand 200 50 S. 24 o 4
The bright [star] at the beginning of the hu-

man body 191 20 S. 33 30 |3
Of the two dim [stars], the one to the east 191 o S. 31 o 5
The one to the west 189 50 S. 30 20 |3
In the juncture of the back 185 30 S. 33 50 5
West of the foregoing, in the back of the horse| 182 20 S. 37 30 |3
Of the three [stars] in the groin, the one to

the east 179 10 S. 40 o 3
The one in the middle 178 20 S. 40 20 | 4
Of the three, the one to the west 176 o S. 41 o 5
Of the two [stars] close together in the right

hip, the one to the west 176 o S. 46 10
The one to the east 176 40 S. 46 45 | 4
In the chest below the wing of the horse 191 40 S. 40 45 4
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Of the two [stars] in the belly, the one to the

west 179 50 S. 43 o 2
The one to the east 181 o S. 43 45 | 3
In the instep of the right foot 183 20 S. 51 10 2
In the calf of the same [leg] 188 40 S. 51 40 | 2
In the instep of the left foot 188 40 S. 55 10 4
Below the muscle of the same [leg] 184 30 S. 55 40 | 4
At the top of the right forefoot 181 40 S. 41 10 |1
In the left knee 197 30 S. 45 20 |2
Outside [the constellation] below the right

thigh 188 o S. 49 10 |3
37 stars: 1 of the 1st magnitude, 5 of the 2nd, 7 of the 3rd, 15 of the 4th, 9 of the 5th
BEAST HELD BY THE CENTAUR
At the top of the hind foot near the Centaur’s

hand 201 20 S. 24 50 |3
In the instep of the same foot 199 10 S. 20 10 3
Of the two [stars] in the shoulder, the one to

the west 204 | 20 S. 21 5 |4
The one to the east 207 30 S. 21 o 4
In the middle of the body 206 20 S. 25 10 4
In the belly 203 | 30 | S 27 o |5
In the hip 204 10 S. 29 o 5
Of the two [stars] in the joint of the hip, the

one to the north 208 o S. 28 30 |5
The one to the south 207 o S. 30 o 5
At the top of the loins 208 40 S. 33 10 |5
Of the three [stars] at the tip of the tail, the

one to the south 195 20 S. 31 20 |5
The one in the middle 195 10 S. 30 o 4
Of the three, the one to the north 196 20 S. 29 20 | 4
Of the two [stars] in the throat, the one to the

south 212 10 S. 17 o |4
The one to the north 212 40 S. 15 20 | 4
Of the two [stars] in the open mouth, the one

to the west 209 o S. 13 30 | 4
The one to the east 210 o S. 12 50 | 4
Of the two [stars] in the forefoot, the one to

the south 240 | 40 S. o8 30 | 4
Farther north 239 50 S. 10 o 4
19 stars: 2 of the 3rd magnitude, 11 of the 4th, 6 of the 5th
HEARTH OR CENSER
Of the two [stars] in the base, the one to the

north 231 o S. 22 40 |5
The one to the south 233 40 S. 25 45 | 4
In the middle of the small altar 229 30 S. 26 30 | 4
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Of the three [stars] in the brazier, the one to

the north 224 o S. 30 20 |5
Of the two [stars] close together, the one to

the south 228 30 S. 34 0 |4
The one to the north 228 20 S. 33 20 | 4
In the middle of the flame 224 10 S. 34 10 4
7 stars: 5 of the 4th magnitude, 2 of the 5th
SOUTHERN CROWN
Outside the southern edge, to the west 242 30 S. 21 30 | 4
East of the foregoing, in the crown 245 o S. 21 o 5
East of the foregoing 246 30 S. 20 20 5
Farther east 248 10 S. 20 o 4
East of the foregoing, west of the Archer’s

knee 249 30 S. 18 30 |5
The bright [star] in the knee, to the north 250 40 S. 17 10 4
Farther north 250 10 S. 16 o 4
Still farther north 249 50 S. 15 20 | 4
Of the two [stars] in the northern edge, the

one to the east 248 30 S. 15 50 6
The one to the west 248 o S. 14 50 6
At some distance to the west of these [two

foregoing] 245 10 S. 14 40 | 5
Still farther west 343 o S. 15 50 5
The remaining [star], farther south 242 30 S. 18 30 |5
13 stars: 5 of the 4th magnitude, 6 of the 5th, 2 of the 6th
SOUTHERN FISH
In the mouth; also at the edge of the River 300 20 S. 23 o I
Of the three [stars] in the head, the one to the

west 294 o S. 21 20 | 4
The one in the middle 297 30 S. 22 15 4
The one to the east 299 o S. 22 30 | 4
At the gill 297 | 40 | S. 16 15 | 4
In the southern fin and back 288 30 S. 19 30 |5
Of the two [stars] in the belly, the one to the

east 294 | 30 S. 15 0 |5
The one to the west 292 10 S. 14 30 | 4
Of the three [stars] in the northern fin, the

one to the east 288 30 S. 15 15 4
The one in the middle 285 10 S. 16 30 | 4
Of the three, the one to the west 284 20 S. 18 10 4
At the tip of the tail 289 20 S. 22 5 |4
Not including the first [star], 11 stars: 9 of the 4th magnitude, 2 of the 5th
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NEAR THE SOUTHERN FISH, OUTSIDE THE CONSTELLATION

Of the bright [stars] west of the Fish, the one

to the west 271 20 | S 22 20 |3
The one in the middle 274 30 S. 22 10 |3
Of the three, the one to the east 277 20 S. 21 o 3
The dim [star] west of the foregoing 275 20 S. 20 50 |5
Of the others toward the north, the one

farther south 277 10 S. 16 o 4
The one farther north 277 10 S. 14 50 | 4

6 stars: 3 of the 3rd magnitude, 2 of the 4th, 1 of the 5th

In the southern region [there are] 316 stars: 7 of the 1st magnitude, 18 of the 2nd, 60 of

the 3rd, 167 of the 4th, 54 of the 5th, 9 of the 6th, 1 cloudy. Therefore, [there are] altogether
1,022 stars: 15 of the 1st magnitude, 45 of the 2nd, 208 of the 3rd, 474 of the 4th, 216 of the
5th, 50 of the 6th, 9 dim, 5 cloudy.
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Nicolaus Copernicus

Revolutions
Book Three

The precession of the equinoxes and solstices. Chapter 1.

Having portrayed the appearance of the fixed stars, I must pass on to the topics
connected with the annual revolution. Hence I shall first discuss the shift in the
equinoxes, on account of which the fixed stars too are believed to move.

Now, the ancient astronomers, I have found, made no distinction between
the tropical or natural year, which is measured from an equinox or solstice, and
the year which is completed with reference to one of the fixed stars. Hence they
thought that the Olympic years, which they started with the rising of Procyon,
were the same as the years measured from a solstice (since the difference be-
tween the one and the other had not yet been discovered).

Now Hipparchus of Rhodes, a man of marvelous acumen, was the first to
notice that these years are different from each other. When he was scrutinizing
the length of the year more intently, he found that as measured with reference
to the fixed stars, it was longer than when measured with reference to the equi-
noxes or solstices. Hence he thought that the fixed stars too had a motion in
the order of the zodiacal signs, but a very slow motion which could not be
perceived immediately [Ptolemy, Synzauxis, 111, 1]. Now however, with the pas-
sage of time it has become absolutely clear. Because of it we see that at present
the signs and stars rise and set quite differently from the indications of the
ancients, and that the twelve signs of the zodiac have shifted a considerable
distance away from those constellations of the fixed stars which originally agreed
with them in name and position.

Moreover, the motion is found to be nonuniform. The desire to account for
this nonuniformity has elicited various beliefs. In the opinion of some people,
the universe, being in suspension, has a certain oscillation, a motion such as we
find in the latitudes of the planets [ V], 2]; within fixed limits on either side, the
advance will be matched at some time by a return; and the deviation from the
mean in both directions is not greater than 8° But this idea, which is already

obsolete, could not survive. The principal reason is,

as is now quite clear, that the first point of the constellation Ram is more than

three times 8° away from the vernal equinox. The same is true of other stars,
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while in the meantime throughout so many centuries no trace of a return has
been perceived. Others have indeed held that the sphere of the fixed stars moves
torward, but with unequal strides; yet they have laid down no definite pattern.
Besides, another marvel of nature supervened: the obliquity of the ecliptic does
not appear as great to us as it did before Ptolemy, as I said above.

As the explanation of these observations, some people excogitated a ninth
sphere, and others a tenth, by which they thought that these phenomena are
brought to pass in this way. Yet they could not furnish what they promised. An
eleventh sphere too has already begun to emerge into the light of day, as though
so large a number of circles were not enough. By invoking the motion of the
earth, I shall easily refute this number of circles as superfluous by showing that
they have no connection with the sphere of the fixed stars. For, as I have already
explained in part in Book I [Chapter 11], the two revolutions, I mean, the an-
nual inclination and the revolution of the earth’s center, are not exactly equal,
the inclination being of course completed a little ahead of the period of the
center. Hence, as must follow, the equinoxes and solstices seem to move for-
ward. The reason is not that the sphere of the fixed stars moves eastward, but
rather that the equator moves westward, the equator being oblique to the plane
of the ecliptic in proportion to the inclination of the axis of the terrestrial globe.
For it would be more appropriate to say that the equator is oblique to the eclip-
tic than that the ecliptic is oblique to the equator (since a smaller thing is being
compared with something bigger). Indeed, the ecliptic, being described by the
annual revolution at the distance between the sun and the earth, is much bigger
than the equator, which is produced, as I said [1, 1], by the earth’s daily motion
around its axis. And in this way those intersections at the equinoxes, together
with the entire obliquity of the ecliptic, are seen to move ahead in the course of
time, whereas the stars lag behind. Now the measurement of this motion and
the explanation of its variation were not known to earlier [astronomers]. The
reason is that the period of its revolution is still undiscovered on account of its
unforeseeable slowness. For in so many centuries, since it was first discovered
by mortal man, it has completed barely %100f a circle. Nevertheless, so far as I
can, I shall clarify this matter by means of what I have learned about it from the

history of the observations down to our own time.
History of the observations proving that the precession of the equinoxes and
solstices is not uniform. Chapter 2.

Now in the first period of 76 years according to Callippus, and in the 36th year
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thereof, which was the 3oth year after the death of Alexander the Great,
Timocharis of Alexandria, the first man to be concerned about the places of
the fixed stars, reported that the Spike, which the Virgin holds, was at a dis-
tance of 82%3° from the [summer] solstitial point, with a latitude of 2° south.
The northernmost [star] of the three in the forehead of the Scorpion, and the
first in order as that zodiacal sign is formed, had a [north] latitude of 1%5°, with
a distance of 32° from the autumnal equinox. Again, in the 48th year of the
same period he found the Spike in the Virgin at a distance of 82%° from the
summer solstice, while its latitude remained the same. But in the joth year of
the 3rd Callippic period, the 196th year of Alexander, the star called Regulus,
which is in the Lion’s chest, was found by Hipparchus to be following the
summer solstice by 29° 50". Then in the first year of the emperor Trajan, which
was the ggth year after the birth of Christ, and the 422nd year after the death of
Alexander, the Roman geometer Menelaus reported that the longitudinal dis-
tance of the Spike in the Virgin from the [summer] solstice was 86%4°, while
the [star] in the forehead of the Scorpion was 35'%12° away from the autumnal
equinox. Following them, in the aforementioned 2nd year of Antoninus Pius
[II, 14], which was the 462nd year after the death of Alexander, Ptolemy learned
that Regulus in the Lion had acquired a longitudinal distance of 32%2° from the
[summer] solstice, the Spike 86%2° and the aforesaid [star] in the forehead of
the Scorpion 36%° from the autumnal equinox. In latitude there was no change
at all, as was indicated above in the Catalogue. I have reviewed these deter-
minations just as they were reported by those [astronomers].

But along time later, namely, 1,202 years after Alexander’s death, Al-Battani
of Ragqa made the next observation, in which we may have the utmost confi-
dence. In that year Regulus or Basiliscus in the Lion was seen to have reached

44° 5" from the [summer] solstice; and the star in the forehead of the Scorpion,

47°50°

from the autumnal equinox. In all these observations the latitude of each star
always remained the same, so that in this regard [astronomers] no longer have
any doubt.

Hence in the year 1525 A.D., the first year after a leap year according to the
Roman [calendar], and the 1,849th Egyptian year since Alexander’s death, at
Frombork in Prussia I too observed the Spike, which has been mentioned fre-
quently. Its maximum altitude on the meridian was seen to be approximately

27°. But I found the latitude of Frombork to be 54°19%". Therefore the Spike’s
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declination from the equator evidently was 8° 40". Hence its place was estab-
lished as follows.

Through the poles of both the ecliptic and the equator I drew the meridian
ABCD. Let it intersect the equator in the diameter AEC, and the ecliptic in
the diameter BED. Let the ecliptic’s north pole be F, and its axis FEG. Let B
be the first point of the Goat, and D of the Crab. Now take the arc BH equal to

the star’s south latitude of 2°. From the point H, :
draw HL parallel to BD. Let HL intersect the = = 7”\

axis of the ecliptic in I, and the equator in K. f B

Also take MA, an arc of 8° 40', in agreement with

the star’s southern declination. From the point A
M, draw MN parallel to AC. MN will intersect G H
HIL, which is parallel to the ecliptic. Then let

MN intersect HIL in the point O. OP, the straight line at right angles [to
MN], will be equal to half of the chord subtending twice the declination AM.
But the circles whose diameters are FG, HL, and MN are perpendicular to the
plane ABCD. Their intersections, according to Euclid’s Elements, X1, 19, are
perpendicular to the same plane at points O and I. These intersections are
parallel to each other, according to Proposition 6 of the same Book. Moreover,
Iis the center of the circle as whose diameter is HL. Therefore OI will be equal
to half of the chord subtending, on the circle whose diameter is HL, twice the
arc which is similar to the star’s longitudinal distance from the first point of the
Balance. This is the arc which we are seeking.

Now it is found in the following way. The angles at OKP and AEB are equal,
being alternate interior angles, and OPK is a right angle. Therefore the ratio of
OP to OK is the same as the ratio of half the chord subtending twice AB

to BE, and of half the chord subtending twice AH to HIK, since the triangles
involved are similar to OPK. But AB is 23° 28%2"; and half of the chord subtend-
ing twice AB is 39,832 units, whereof BE is 100,000. ABH is 25° 28%2"; half of
the chord subtending twice ABH is 43,010. MA, half of the chord subtending
twice the declination, is 15,069 units. Hence it follows that the whole of HIK is
107,978 units; OK is 37,831 units; and the remainder HO is 70,147. But twice
HOI subtends the circular segment HGL of 176°. HOI will be 99,939 units,
whereof BE was 100,000. The remainder OI will therefore be 29,792. But with
HOI = 100,000 units as half of a diameter, OI will be 29,810 units, correspond-

ing to an arc of approximately 17° 21". This was the distance of the Spike in the
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Virgin from the first point of the Balance, and this was the place of the star.

Also a decade earlier, namely, in the year 1515, I found its declination 8°36’,
and its place at 17° 14" [from the first point] of the Balance. But Ptolemy re-
ported its declination as only %° [Syntaxis, VII, 3]. Therefore its place would
have been at 26° 40" within the Virgin, which appears to be more accurate in
comparison with the earlier observations.

Hence it seems quite clear that virtually throughout the whole interval from
Timocharis to Ptolemy in 432 years the equinoxes and solstices shifted in prec-
edence 1°regularly every 100 years, as there was always a constant ratio between
the time and the extent of their movement, which in its entirety amounted to
4%5°. For also when the distance between the summer solstice and Basiliscus in
the Lion is compared for the interval from Hipparchus to Ptolemy, in 266 years
the equinoxes shifted 2%3°. Here too, then, by being compared with the time
they are found to have moved forward 1°in 100 years. On the other hand, the
[star] at the top of the forehead of the Scorpion in the 782 years intervening
between Al-Battani and Menelaus traversed 11° 55". To 1° there will have to be
assigned, as will be seen, not 100 years at all, but 66 years. Moreover, in the 741
years 2° from Ptolemy [to Al-Battani], only 65 years are to be assigned to 1°.
Finally, if the remaining period of 645 years is compared with the difference of
9°11” of my observation, 1° will receive 71 years. Hence in those 400 years before

Ptolemy, clearly the precession of the equinoxes was slower

than from Ptolemy to Al-Battani, when it was also quicker than from Al-Battani
to our times.

Likewise in the motion of the obliquity a difference is discovered. For,
Aristarchus of Samos found the obliquity of the ecliptic and equator to be 23°
51" 20", the same as Ptolemy; Al-Battani, 23°36"; Al-Zarkali the Spaniard, 190
years after him, 23°347; and in the same way 230 years later, Profatius the Jew,
about 2" less. But in our time it is found not greater than 23° 28%". Hence it is
also clear that from Aristarchus to Ptolemy, the motion was a minimum, but

from Ptolemy to Al-Battani a maximum.

Hypothesis by which the shift in the equinoxes as well as in the obliquity of
the ecliptic and equator may be demonstrated. Chapter 3.

From the foregoing it seems to be clear, then, that the equinoxes and solstices
shift with a nonuniform motion. Nobody will adduce a better explanation of this,

perhaps, than by a certain divagation of the earth’s axis and of the poles of its
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equator. For this seems to follow from the hypothesis that the earth moves. For
obviously the ecliptic remains forever unchangeable, as is attested by the constant
latitudes of the fixed stars, whereas the equator shifts. For if the motion of the
earth’s axis agreed simply and precisely with the motion of its center, as I said [I,
11], absolutely no precession of the equinoxes and solstices would appear. How-
ever, since these motions differ from each other, but with a variable difference,
the solstices and equinoxes also had to move ahead of the places of the stars in a
nonuniform motion. The same thing happens in the motion of inclination. This
motion likewise nonuniformly alters the obliquity of the ecliptic, an obliquity
which would nevertheless be more properly assigned to the equator.

For this reason, since the poles and circles on a sphere are interconnected
and fit together, it is necessary to posit two interacting motions performed
entirely by the poles and similar to swinging librations. Now one motion will

be that which alters the inclination of those circles

to each other by deflecting the poles in that manner up and down around the
angle of intersection. The other [will be the motion] which increases and de-
creases the solstitial and equinoctial precessions by producing a crosswise mo-
tion in both directions. Now I call these motions “librations,” because like ob-
jects swinging along the same path between two limits, they become faster in
the middle and slowest at the extremes, as generally happens in the latitudes of
the planets, as we shall see in the proper place [VI, 2]. Moreover, [these mo-
tions] differ in period, since two cycles of the nonuniformity of the equinoxes
are completed in one cycle of the obliquity. Now in every apparent nonuniform
motion something must be posited as a mean, through which the pattern of the
nonuniformity can be grasped. Similarly, here too of course mean poles and a
mean equator as well as mean equinoctial intersections and solstitial points had
to be posited. Turning to either side of these means, but within fixed limits, the
poles and the circle of the earth’s equator make those uniform motions appear
nonuniform. Thus those two librations running in conjunction with each other
make the poles of the earth in the course of time describe certain lines resem-
bling a twisted little crown.

But these matters are not easily explained adequately with words. Hence
they will not be understood when heard, I am afraid, unless they are also seen
with the eyes. Therefore let us draw on a sphere the ecliptic ABCD. Let its
north pole be E, the first point of the Goat A, of the Crab C, of the Ram B, and
of the Balance D. Through the points A and C as well as the pole E, draw the
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circle AEC. Let the greatest distance between the north poles of the ecliptic
and of the equator be EF, the least distance EG, and similarly the mean posi-
tion of the pole, I. About I, describe BHD as the equator. Let this be called the
mean equator, with B and D as the mean equinoxes. Let all these things be
carried around the pole E in a constantly uniform motion in precedence, that
is, in the contrary order of the zodiacal signs in the sphere of the fixed stars, in
a slow motion, as I said [III, 1]. Now posit, for the terrestrial poles, two inter-
acting motions, like swinging objects. [Of these two motions] one [occurs]
between the limits I and G; it will be called the “motion of anomaly,” that is, of
the nonuniformity of the inclination. The other, [which runs] crosswise from
precedence to consequence, and from consequence to precedence, I shall call
the “anomaly of the equinoxes.” It is twice as fast as the first one. Both of these
motions, meeting in the poles of the earth, deflect them in a wonderful way.

For in the first place, put the north pole of the earth at F.

The equator drawn around it will pass through the same intersections B and D,
namely, through the poles of the circle AFEC. But this equator will make the
angles of the obliquity greater, in proportion to the arc FI. As the pole of the
earth is about to proceed from this assumed beginning toward the mean obliq-

uity in I, the other motion intervenes and does not permit the pole to go di-

rectly along FI. On the
contrary, the second
motion deflects the pole
through a roundabout
course and extreme di-
vergence in conse-
quence. Let this be K.
When the apparent
equator OQP is de-
scribed around this
point, its intersection
will be, not in B, but be-
hind itin O, and the pre-

cession of the equinoxes _
c

is diminished in propor-
tion to the amount of BO. Turning at this point and proceeding in precedence,

the pole is taken to the mean position I by both motions acting conjointly and
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simultaneously. The apparent equator coincides throughout with the uniform
or mean equator. As the pole of the earth passes through this point, it presses
on in precedence. It separates the apparent equator from the mean equator, and
increases the precession of the equinoxes up to the other limit, L. As the pole
turns away from this position, it subtracts what it had just added to the equi-
noxes, until it reaches the point G. There it makes the obliquity a minimum at
the same intersection B, where the motion of the equinoxes and solstices will
again appear very slow, in almost exactly the same way as at F. At this time their
nonuniformity has clearly completed its revolution, since it has passed from the
mean through both of the extremes. But the motion of the obliquity [has passed]
through only half of its circuit, from the greatest inclination to the least. Then
as the pole proceeds in consequence, it presses on to the outermost limit in M.
When it returns therefrom, it coincides again with the mean position I. As it
presses on once more in precedence, it passes through the limit N, and finally

completes

what I called the twisted line FKILGMINF. Thus it is clear that in one cycle of
the obliquity, the pole of the earth reaches the limit of precedence twice, and

the limit in consequence twice.

How an oscillating motion or motion in libration is constructed out of
circular [motions]. Chapter 4.
Now I shall hereafter show that this motion is in agreement with the phenom-

ena [III, 6]. But meanwhile someone will ask in what way these librations can

be understood to be uniform,
since it was stated in the be-
ginning [I, 4] that a motion in
the heavens is uniform or
composed of uniform and cir-
cular [motions]. In this in-
stance, however, both of the

two motions appear as a sin-

gle motion within the limits
of both, so that a cessation [of

motion| must intervene. I will

indeed admit that they are

paired, but [that oscillating
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motions are formed] from uniform [motions] is proved in the following way.
Let there be a straight line AB. Let it be divided into four equal parts at
points C, D, and E. Around D, draw the circles ADB and CDE, with the same
center and in the same plane. On the circumference of the inner circle, take any
point F at random. With F as center, and with radius FD, draw the circle
GHD. Let this intersect the straight line AB at the point H. Draw the diam-
eter DFG. It must be shown that the movable point H slides back and forth in
both directions along the same straight line AB, on account of the paired mo-
tions of the circles GHD and CFE acting conjointly. This will happen if H is
understood to move in the opposite direction from F and twice as far. For, the
same angle CDEF, being located at the center of the circle CFE and at the
circumference of GHD, intercepts as arcs of equal circles both FC and GH,
which is twice FC. Assume that at some time when the straight lines ACD and
DFG coincide, the movable point H coincides at G with A, while F is at C.
Now, however, the center F moves to the right along FC, and H moves along

the arc GH to the left twice as far as CF,

or these directions may be reversed. Then the line AB will be the track for H.
Otherwise, it would happen that a part is greater than its whole. This is easily
understood, I believe. Now, having been drawn along by the broken line DFH,
which is equal to AD, H has

moved away from its previous

A

position A by the length of
AH, this distance being the
excess of the diameter DFG
over the chord DH. In this way
H will be taken to the center
D. This will happen when the
circle DHG i1s tangent to the
straight line AB, while GD is
of course perpendicular to AB.

Then H will reach the other

limit B, from which it will re-

turn again for the same reason.
Therefore it is clear that from two circular motions acting conjointly in this
way, a rectilinear motion is compounded, as well as an oscillating and nonuniform

motion from uniform [motions]. Q.E.D.
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From this demonstration it also follows that the straight line GH will al-
ways be perpendicular to AB, since the lines DH and HG will subtend a right
angle in a semicircle. Therefore GH will be half of the chord subtending twice
the arc AG. The other line DH will be half of the chord subtending twice the

arc which remains when AG is subtracted from a quadrant, since the circle

AGB is twice HGD in diameter.

Proof of the nonuniformity in the precession of the equinoxes and in the
obliquity. Chapter .

Accordingly some people call this the “motion along the width of a circle,” that
is, along the diameter. Yet they treat its period and uniformity in terms of the
circumference, but its magnitude in terms of chords. Hence it appears non-

uniform, faster around the center and slower

near the circumference, as is easily demonstrated.

Now let there be a semicircle ABC, with its center at D, and diameter ADC.
Bisect the semicircle at the point B. Take equal arcs AE and BEF, and from points
F and E drop the perpendiculars EG and FK on ADC. Now twice DK subtends
twice BEF, and twice EG subtends twice AE.
Therefore DK and EG are equal. But in ac-
cordance with Euclid’s Elements, 111, 7, AG is
less than GE, and will also be less than DK.
But GA and KD were traversed in equal times, | €
because the arcs AE and BF are equal. There-

fore near the circumference A the motion is

slower than near the center D.
Now that this has been demonstrated, put
the center of the earth at L, so that the straight

line LD is perpendicular to ABC, the plane of

the semicircle. Through the points A and C,

with its center at L, draw AMC as the arc of a circle. Extend LDM as a straight
line. Therefore the pole of the semicircle ABC will be at M, and ADC will be the
intersection of the circles. Join LA and LC. In like manner join LK and LG;
when these are extended as straight lines, let them intersect the arc AMC in N
and O. Now at LDK there is a right angle. Therefore the angle at LKD is acute.
Hence it is also true that the line LK is longer than LD. Even more so, in the
obtuse triangles side LG is longer than side LK, and LA than LG.
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Now a circle drawn with its center at L, and with radius LK, will fall be-
yond LD, but will intersect the remaining lines LG and LA. Let the circle be
drawn, and let it be PKRS. Triangle LDK is smaller than the sector LPK. But
triangle LGA is bigger than the sector LRS. Therefore the ratio of the triangle
LDK to the sector LPK is less than the ratio of the triangle LGA to the sector
LRS. In turn, the ratio of the triangle LDK to the triangle LGA will also be
less than the ratio of the sector LPK to the sector LRS. In accordance with
Euclid’s Elements, V1, 1, base DK is to base AG as triangle LKD is to triangle
LGA. The ratio of the sector to the sector, however, is as angle DLK is to angle
RLS, or as arc MN is to arc OA. Therefore the ratio of DK to GA is less than
the ratio of MN to OA. But I have already shown that DK is bigger than GA.
All the more, then, will

MN be greater than OA. These are known to be described in equal periods of
time by the poles of the earth along the equal arcs AE and BF of the anomaly.
Q.E.D.

However, the difference between the maximum and minimum obliquity is
quite small, and does not exceed %8. Therefore also between the curve AMC
and the straight line ADC the difference will

be imperceptible. Hence no error will occur if /ﬁﬁ

we operate simply with the line ADC and the \ \
o
( t|“{- =

-
e riim i

semicircle ABC. Just about the same thing hap-

pens with regard to the other motion of the =
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i ey .I,.:_
i
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poles which affects the equinoxes, since it does

not reach %°, as will be made clear below.
Again let there be the circle ABCD
through the poles of the ecliptic and mean

equator. We may call this circle the “mean colure of the Crab.” Let half of the
ecliptic be DEB. Let the mean equator be AEC. Let them intersect each other
in the point E, where the mean equinox will be. Let the pole of the equator be
E, through which draw the great circle FET. This will therefore be the colure of
the mean or uniform equinoxes. Now to make the proof easier, let us separate
the libration of the equinoxes from the [libration of the] obliquity of the eclip-
tic. On the colure EF, take the arc FG. Let G, the apparent pole of the equator,
be understood to move through FG from F, the mean pole. With G as pole,
draw ALKC as the semicircle of the apparent equator. This will intersect the
ecliptic in L. Therefore the point L will be the apparent equinox. Its distance
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from the mean equinox will be the arc LE, governed by the equality of EK with
FG. But we may make K a pole, and describe the circle AGC. We may also
posit that during the time in which the libration FG occurs, the pole of the
equator does not remain the true pole in the point G; on the contrary, under
the influence of the second libration it diverges toward the obliquity of the
ecliptic along the arc GO. Therefore, while the ecliptic BED remains station-
ary, the true apparent equator will shift in accordance with the dislocation of
the pole O. And in the same way the motion of L, the intersection of the
apparent equator, will be faster around E, the mean equinox, and slowest at the
extremes, approximately in proportion to the libration of the poles, which has

already been demonstrated [I11, 3]. To have perceived this was worth while.

The uniform motions of the precession of the equinoxes and of the inclina-
tion of the ecliptic. Chapter 6.

Now every circular motion which appears nonuniform occupies four boundary
zones. There is [a zone] where it appears slow, and [one] where it is fast, as
extremes; and midway between, it is average. For at the end of the deceleration
and beginning of the acceleration it changes in the direction of the average
[velocity]; from the average it increases to [the highest] speed; from high speed
it tends again toward the average; then the remainder returns from the uniform
[speed] to the previous slowness. These considerations make known in what
part of the circle the place of the nonuniformity or anomaly was at a [given]
time. From these properties the cycle of the anomaly is also understood.

For example, in a circle divided into four equal parts let A be the place of
the greatest slowness, B the average velocity on the increase, C the end of the
increase and the beginning of the decrease, and D the average velocity on the
decrease. Now from Timocharis to Ptolemy, as was indicated above [III, 2], the
apparent motion of the precession of the equinoxes has been found slower than
at all other times. For a while it appeared regular and uniform, as is shown by
the observations of Aristyllus, Hipparchus, Agrippa, and Menelaus in the mid-
dle of the period. This proves, therefore, that the apparent motion of the equi-
noxes was at its very slowest. In the middle of the period it was at the beginning
of the acceleration. At that time the cessation of the deceleration, combined
with the beginning of the acceleration, by counteracting each other made the
motion seem uniform in the meantime. Hence Timocharis’ observation must
be placed in the last part of the circle within DA. But Ptolemy’s observation
will fall in the first quadrant within AB. Furthermore, in the second period
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from Ptolemy to Al-Battani of Raqqa the motion is found to be faster than in
the third period. Hence this indicates that the highest velocity, that is, the
point C, passed by in the second period of time. The anomaly has now reached
the third quadrant of the circle within CD. In the third period down to our
time the cycle of the anomaly is nearly completed and is returning to where it
began with Timocharis. For we may incorporate the entire cycle of 1,819 years
from Timocharis to us in the customary 360°. In proportion to 432 years, we
shall have an arc of 85%°% but for 742 years, 146° 517; and for the remaining 645
years, the remaining arc of 127° 39". I obtained these results ofthand and by a

simple conjecture.

But I reexamined them in a more precise computation of the extent to which
they would agree more exactly with the observations. I found thatin 1,819 Egyp-
tian years the motion of the anomaly had already completed its revolution, and
exceeded it by 21° 24”. The time of a period contains only 1,717 Egyptian years.
By this calculation the first segment of the circle is determined to be 9o°35’; the
second, 155° 34; but the third in 543 years will contain the remaining 113° 51" of
the circle.

After these results had been established in this way, the mean motion of the
15 is precession of the equinoxes also became clear. It is 23° 57" in the same 1,717
years in which the entire nonuniformity is restored to its original state. For in
1,819 years we had an apparent motion of about 25° r'. But, the difference be-
tween 1,717 years and 1,819 being 102, in 102 years after Timocharis the apparent
motion must have been about 1° 4". For it probably was a little greater than the
completion of 1° in 100 years at that time when it was decreasing but had not
yet reached the end of the deceleration. Accordingly, if we subtract 1¥108 from
25° 1, the remainder will be, as I mentioned, in 1,717 Egyptian years the mean
and uniform motion, which was then equal to the nonuniform and apparent
motion of 23°57°. Hence the entire uniform revolution of the precession of the
equinoxes mounts up to 25,816 years. During that time about 15%2s cycles of the
anomaly are completed.

This computation is also in conformity with the motion of the obliquity,
whose cycle I said is twice as slow as the precession of the equinoxes [III, 3].
Ptolemy reported that the obliquity of 23° 51" 20" had not changed at all in the
400 years before him since Aristarchus of Samos. Hence this shows that it then
stayed nearly steady around the limit of maximum obliquity, when of course

the precession of the equinoxes was also having its slowest motion. At present
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the same restoration of the slow motion is also approaching. However, the
inclination of the axis is not crossing over in like manner to the maximum, but
to the minimum. In the intervening period the inclination was found, as I said
[I11, 2], by Al-Battani to be 23° 35"; by Al-Zarkali the Spaniard, 190 years after
him, 23° 34’ and in the same way 230 years later, by Profatius the Jew, about 2’
less. Finally, so far as our own times are concerned, in frequent observations
over the past 30 years, I have found it to be about 23° 28%%, From this determi-

nation George Peurbach and Johannes Regiomontanus,

who were my immediate predecessors, differ very little.

Here again it is absolutely clear that the shift in the obliquity in the 9oo
years after Ptolemy happened to be greater than in any other period of time.
Therefore, since we already have the cycle of the anomaly of precession in 1,717
years, we shall also have half a period of the obliquity in that time, and its
complete cycle in 3,434 years. Hence if we divide 360° by the same number of
3,434 years, or 180° by 1,717, the annual motion of the simple anomaly will come
outas 6" 177 24" 9””". When this quantity is again divided by 365 days, the daily
motion becomes 1 2" 2", Similarly when the mean motion of the precession
of the equinoxes—and this was 23° 57 —is divided by 1,717 years, the annual
motion will come out as 50" 12" 5", and when this quantity is divided by 365
days, the daily motion will be 8" 15",

Now to make the motions clearer and to have them handy when occasion
requires, I shall exhibit them in Tables or Catalogues. The annual motion will be
added continuously and equally. If a number exceeds 60, a unit will always be
moved over to the higher fraction of a degree or to the degrees. I have extended
the Tables as far as the 6o-year line (for the sake of convenience). For in 60 years
the same set of numbers appears (only the designations of degrees and fractions
of degrees being transposed). Thus what was previously a second becomes a minute,
and so on. By this shortcut with these brief Tables and with only two entries we
may obtain and infer the uniform motions for the years in question up to 3,600
years. The same holds true also for the number of the days.

In computing the heavenly motions, however, I shall use Egyptian years
everywhere. Among the civil [years], they alone are found to be uniform. For
the measuring unit had to agree with what was measured. Harmony to this
extent does not occur in the years of the Romans, Greeks, and Persians. With
them an intercalation is made, not in any one way, but as each of the nations

preferred. The Egyptian year, however, presents no ambiguity with its definite
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number of 365 days. [They comprise] 12 equal months, which are called in
order by their own names: Thoth, Phaophi, Athyr, Choiach, Tybi, Mechyr,
Phamenoth, Pharmuthi, Pachon, Pauni, Ephiphi, and Mesori. These in like
manner contain 6 groups of 6o days, and the 5 remaining days are termed inter-
calary. For this reason in the computation of the uniform motions, Egyptian
years are most convenient. Any other years are easily reduced to them by a

transposition of days.

The Uniform Motion of the Precession of the Equinoxes
in Years and Periods of Sixty Years Christian Era 5°32”
Longitude Longitude
Years | 60° ° Years | 60° °

I o o o 50 12 31 o o 25 56 14
2 o o I 40 24 32 o o 26 46 26
3 o o 2 30 36 33 o o 27 36 38
4 o o 3 20 48 34 o o 28 26 50
5 o o 4 11 o 35 o o 29 17 2
6 o o 5 I 12 36 o o 30 7 15
7 0 o 5 51 24 37 o o 30 57 27
8 o o 6 41 36 38 o o 31 47 39
9 o o 7 31 48 39 o o 32 37 51
10 o o 8 22 o 40 o o 33 28 3
I o o 9 12 12 41 o o 34 18 15
12 o o 10 2 25 42 o o 35 8 27
13 o o Io 52 37 43 o o 35 58 39
4 o o) I 42 49 44 o o 36 48 51
15 o o 2 33 I 45 o o 37 39 3
16 o o 13 23 13 46 o o 38 29 15
7 o o 14 13 25 47 o o 39 19 27
18 o o 15 3 37 48 o o 40 9 40
19 o o 15 53 49 49 o o 40 59 52
20 o o 16 44 I 50 o o 41 50 4
21 o o) 17 34 3 51 o o 42 40 16
22 o o 18 24 25 52 o o 43 30 28
23 o o | 19 | 14 | 37 53 o o | 44 | 20 | 40
24 o o 20 4 50 54 o o 45 10 52
25 o o 20 55 2 55 o o 46 I 4
26 o o 21 45 14 56 o o 46 51 16
27 o o 22 35 26 57 o o 47 41 28
28 o o 23 25 38 58 o o 48 31 40
29 o o 24 15 50 59 o o 49 21 52
30 o o 25 6 2 60 o o 50 12 5
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The Uniform Motion of the Precession of the Equinoxes

in Days and Periods of Sixty Days
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The Nonuniform Motion of the Equinoxes page 71v
in Years and Periods of Sixty Years Christian Era 6° 45 =
Motion Motion
Years | 60° ° Years | 60° °
I o o 6 7 24 31 o 3 14 59 28
2 o o 2 34 48 32 o 3 21 16 52
3 o o 18 52 2 33 o 3 27 34 16
4 o o 25 9 36 34 o 3 33 51 41
5 o o 3t 27 o 35 o 3 40 9 5
6 o o 37 44 24 36 o 3 46 26 29
7 © o 44 I 49 37 o 3 52 43 53
8 o o 50 19 13 38 o 3 59 I 17
9 o o 56 | 36 | 37 39 o 4 5 8 | 42
10 o I 2 54 I 40 o 4 11 36 6
11 o I 9 I 25 41 o 4 7 53 30
2 o I 15 28 49 42 o 4 24 10 54
13 o I 21 46 13 43 o 4 30 28 18
14 o I 28 3 38 44 o 4 36 45 42
15 o I 34 21 2 45 o 4 43 3 6
16 o I 40 38 26 46 o 4 49 20 31
17 o I 46 | 55 | 50 47 | o 4 55 | 37 | 55
18 o I 53 13 14 48 o 5 I 55 19
19 o I 59 | 30 | 38 49 o 5 8 2 43
20 o 2 5 48 3 50 o 5 14 30 7
21 o) 2 2 5 27 51 o 5 20 47 31
22 o 2 18 22 5I 52 o 5 27 4 55
23 o) 2 24 40 15 53 o 5 33 22 20
24 0 2 30 57 39 54 o 5 39 39 44
25 o 2 37 | 15 3 55 o 5 45 | 57 8
26 o 2 43 32 27 56 o 5 52 14 32
27 o 2 | 49 | 49 | 52 57 ° 5 8 | 31 | 56
28 o 2 56 7 16 58 o 6 4 49 20
29 o 3 2 24 40 59 o 6 11 6 45
30 o 3 3 42 4 60 o 6 17 24 9
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The Nonuniform Motion of the Equinoxes
in Days and Periods of Sixty Days
Motion Motion
Days | 60° ° Days | 60° °

I o o o I 2 31 o o o 32 3

2 o o o 2 4 32 o o o 33 5
3 o o o 3 6 33 o o o 34 7
4 o o o 4 8 34 o o o 35 9
5 o o o 5 10 35 o o o 36 I
6 o o o 6 12 36 o o o 37 13
7 o o o 7 14 37 o o o 38 15
8 o o o 8 16 38 o o o 39 17
9 o o o 9 18 39 o o o 40 19
10 o o o 10 20 40 o o o 41 21
11 o o o I 22 41 o o o 42 23
2 o o o 12 24 42 o o o 43 25
3 o o o 13 26 43 o o o 44 27
14 o o o 14 28 44 o o o 45 29
15 o o o 15 30 45 o o o 46 31
16 o o o 16 32 46 o o o 47 33
7 o) o o 7 34 47 o o o 48 35
18 o o o 18 36 48 o o o 49 37
19 o) o o 19 38 49 o o o 50 39
20 o o o 20 40 50 o o o 51 41
21 o) o o 21 42 51 o o o 52 43
22 o o o 22 44 52 o o o 53 45
23 o o o 23 46 53 o o o 54 47
24 o ) o 24 | 48 54 o o o 55 49
25 o o o 25 50 55 o o o 56 51
26 o o o 26 52 56 o o o 57 53
27 o o o 27 54 57 o o o 58 55
28 o o o 28 56 58 o o o 59 57
29 o o o 29 58 59 o o I 59
30 o o o 31 I 60 o o I 2 2

What is the greatest difference between the uniform and the apparent
precession of the equinoxes? Chapter 7.

The mean motions having been set forth in this way, we must now ask how
great the maximum difference is between the uniform and the apparent mo-
tion of the equinoxes, or [how great] the diameter of the small circle is through
which the motion in anomaly revolves. For when this is known, it will be easy
to determine any other differences between these motions. Now, as was indi-
cated above [II1, 2], between Timocharis’ first [observation] and Ptolemy’s [ob-
servation] in the 2nd year of Antoninus there were 432 years. In that time the
mean motion is 6°. But the apparent [motion] was 4° 20". The difference be-

o

tween them is 1° 40°. Furthermore, the motion of the double anomaly was 9o
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35". Moreover, in the middle of this ¥
period or about that time, as has been
seen [III, 6], the apparent motion
reached the extreme of greatest slow-
ness. In this [period] it must agree

with the mean motion, while the true e

{

and mean equinoxes must have been | 20 \olas ¥
B

. . . oI ...

at the same intersection of the circles. :

Therefore when the motion and time " Lf’"ﬁ“:hh >
are divided in half, on both sides the

differences between the nonuniform and uniform motions will be %°. These

differences are enclosed on either side below 45°17%" arcs of the circle of anomaly.

Now that these things have been established in this way, let ABC be an arc of
the ecliptic, DBE the mean equator, and B the mean intersection of the apparent
equinoxes, whether the Ram or the Balance. Through the poles of DBE, draw
FB. Now to either side on ABC take equal arcs BI and BK of %°, so that the
whole of IBK is 1° 40". Also draw two arcs IG and HK of the apparent equators at
right angles to FB, extended to FBH. Now I say “at right angles,”

although the poles of IG and HK are very often outside the circle BE, since the
motion in inclination intermingles itself, as was seen in the hypothesis [III, 3].
But because the distance is quite small, not exceeding at its maximum Y00 of a
right angle, I treat those angles as though they were right angles, so far as
perception is concerned. For, no error will appear on that account. Now in

triangle IBG, angle IBG is given as 66° 20". For, the complementary angle

DBA was 23° 40, the mean obliquity of the T
ecliptic. BGI is a right angle. Moreover, angle

BIG is almost exactly equal to its alternate in-

terior angle IBD. Side IB is given as 50". There- ¥ B
tore BG, the distance between the poles of the
mean and apparent [equator], is equal to 20".
Similarly, in triangle BHK, two angles BHK
and HBK are equal to the two angles IBG and IGB, and side BK is equal to
side BI. BH will also be equal to BG’s 20". But all of this is concerned with very

small quantities, which do not amount to 1%° of the ecliptic. In these quantities
the straight lines are virtually equal to the arcs subtended by them, any diver-

gence being barely found in 6oths of a second. I am satisfied with minutes,
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however, and will commit no error if I use straight lines instead of arcs. For, GB
and BH will be proportional to IB and BK, and the same ratio will hold true
for the motions in both poles as well as in both intersections.

Let a part of the ecliptic be ABC. On it let the mean equinox be B. With
this as pole, draw a semicircle ADC, intersecting the ecliptic in points A and
C. From the pole of the ecliptic also draw DB, which will bisect at D the
semicircle we have drawn. Let D be understood to be the utmost limit of the
deceleration and the beginning of the acceleration. In the quadrant AD, take
the arc DE of 45° 17%". Through the point E, drop EF from the pole of the
ecliptic, and let BF be 50". From these [particulars] it is proposed to find the
whole of BFA. Now it is evident that twice BF subtends twice the segment
DE. But as BF’s 7,107 units are to AFB’s 10,000, BF’s 50" are to AFB’s 70".
Therefore AB is given as 1° 10". This is the greatest difference between the
mean and apparent motions of the equinoxes. This is what we were looking for,

and what is followed by the poles’ greatest divergence of 28".

The individual differences between these motions, and a table exhibiting
those differences. Chapter 8.
Now AB is given as 70’, an arc which seems not to differ in length from the
straight line subtending it. Hence it will not be difficult to exhibit any other
individual differences between the mean and the apparent motions. These dif-
ferences, the subtraction or addition of which confers order upon the appear-
ances, are called “prosthaphaereses” by the Greeks, and “equations” by the
moderns. I prefer to use the Greek word as more appropriate.

Now if ED is 3° according to the ratio of AB to the subtending chord BE,
we shall have BF as a prosthaphaeresis of 4’; for 6°, there will be 7’ for 9°, 11’}
and so on. We must operate in the same way, I believe, also with regard to the
shift in the obliquity, where 24" have been found, as I said [III, 5], between the
maximum and the minimum. In a semicircle of the simple anomaly these 24’
are traversed in 1,717 years. Half of the duration in a quadrant of the circle will
be 12". There the pole of the small circle of this anomaly will be, with the obliq-
uity at 23° 40". And in this way, as I said, we shall infer the remaining parts of
the difference almost exactly in proportion to what was said above, as con-
tained in the appended Table.

Through these demonstrations the apparent motions can be put together
in various ways. Nevertheless the most satisfactory procedure was that in which

each individual prosthaphaeresis is taken separately. As a result the computa-
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tion of the motions becomes easier to understand, and conforms more closely
to the explanations of what has been demonstrated. Hence I drew up a Table of
60 lines, advancing 3°at a time. For in this arrangement it will not take up a lot
of space, nor will it seem too compact and brief; in the other similar cases, 1
shall do the same. The present Table will have only 4 columns. The first 2 of
them contain the degrees of both semicircles. I call these degrees the “common
number,” because the number itself yields the obliquity of the ecliptic, while
twice the number will serve as the prosthaphaeresis of the equinoxes, the be-

ginning of which is taken from the start of the acceleration.

The 3rd column will contain the prosthaphaereses of the equinoxes correspond-
ing to every 3rd degree. These prosthaphaereses must be added to or subtracted
from the mean motion, which I initiate from the first star in the head of the
Ram at the vernal equinox. The subtractive prosthaphaereses [pertain to] the
anomaly in the smaller semicircle or first column, while the additive
prosthaphaereses [pertain to] the second [column] and the following semicir-
cle. Finally, the last column contains the minutes, called “the differences be-
tween the proportions of the obliquity,” mounting to 60 as the maximum. For
in place of 24, the surplus by which the greatest obliquity exceeds the smallest,
I put 60. In proportion thereto I adjust the fractions of the remaining surpluses
in a similar ratio. Therefore at the beginning and end of the anomaly I put 6o.
But where the surplus reaches 22’, as in an anomaly of 33°% I put 55 in place of

22". Thus for 20’, I put 50, as in an anomaly of 48°, and so on for the rest, as in

the appended Table.
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Table of the Prosthaphaereses of the Equinoxes
and of the Obliquity of the Ecliptic
Prosthaphae- | Propor- Prosthaphae- | Propor-
Common reses of the 1\;1'1_0“"‘1 Common reses of the l\/t[i‘onal
: inutes . inutes
Numbers Equinoxes b Numbers Equinoxes ehe
Degree | Degree | Degree | Minute Obliquity Degree | Degree | Degree | Minute Obliquity

3 357 o 4 60 93 267 I 10 28
6 354 o 7 60 96 264 I 10 27
9 351 o I 60 99 261 I 9 25
12 348 o 14 59 102 258 I 9 24
15 345 o 18 59 105 255 I 8 22
18 342 o 21 59 108 252 I 7 21
21 339 o 25 58 11 249 I 5 19
24 336 o 28 57 14 246 I 4 18
27 333 o 32 56 117 243 I 2 16
30 330 o 35 56 120 240 I I 15
33 327 o 38 55 123 237 o 59 14
36 324 o 41 54 126 234 o 56 12
39 321 o 44 53 129 231 o 54 I
42 318 o 47 52 132 228 o 52 10
45 315 o 49 5T 135 225 o 49 9
48 312 o 52 50 138 222 o 47 8
51 309 o 54 49 I41 219 o 44 7
54 306 o 56 48 144 216 o 41 6
57 303 o 59 46 147 213 o 38 5
60 300 I I 45 150 210 o 35 4
63 297 I 2 44 153 207 o 32 3
66 294 I 4 42 156 204 o 28 3
69 291 I 5 41 159 201 o 23 2
72 288 I 7 39 162 198 o 21 I
75 285 I 8 38 165 195 o 18 I
78 282 I 9 36 168 192 o 14 I
81 279 I 9 35 171 189 o I o
84 276 I IO 33 174 186 o 7 o
87 273 I 10 32 177 183 o 4 o
90 270 I 10 30 180 180 o o o

Review and correction of the discussion of the precession of the
equinoxes. Chapter 9.
The nonuniform motion began to accelerate (this is the start of the anomalous
motion, as I arrange it) halfway between the 36th year of the first Callippic
period and the second year of Antoninus [Pius], according to my conjectural
assumption. I must therefore still investigate whether my guess was right and
in agreement with the observations.

Let us recall those three stars observed by Timocharis, Ptolemy, and Al-
Battani of Raqqa. In the first interval [between Timocharis and Ptolemy], clearly,
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there were 432 Egyptian years, and 742 in the second [interval between Ptolemy
and Al-Battani]. In the first period the uniform motion was 6° the nonuniform
motion 4° 20’, and the double anomaly 9o° 35°, with 1° 40" being subtracted
from the uniform motion. In the second period the uniform motion was 10° 21/,
the nonuniform motion 11%2° and the double anomaly 155° 34', with 1° 9" being
added to the uniform motion.

As before, let ABC be an arc of the ecliptic. Let B be the mean vernal
equinox. With B as its pole, describe the circlet ADCE, the arc AB being 1°10°.

Regard B as moving uniformly toward A, that is,
in precedence. Let A be the western limit, where
B reaches its greatest divergence in precedence from

the variable equinox, and let C be the eastern limit

(g
of B’s divergence in consequence from the variable \‘

the ecliptic through the point B. Together with the
ecliptic, DBE will divide the circlet ADCE into

four equal parts, since the two circles intersect each other at right angles through

equinox. Furthermore, drop DBE from the pole of \

their poles. In the semicirclet ADC the motion is in consequence, whereas it is
in precedence in the other semicirclet CEA. Therefore the middle of the ap-
parent equinox’s retardation will be at D because of the counteraction to B’s
motion. On the other hand, the greatest speed will occur at E, since the mo-
tions in the same direction reinforce each other. Moreover, in front of and be-
hind D take the arcs FD and DG, each being 45°17%2". Let F be the anomaly’s
first terminus, that is, Timocharis’; G, the second, Ptolemy’s; and P, the third,
Al-Battani’s. Through these points and through the poles of the ecliptic drop
the great circles FN, GM, and OP, all of which

within the circlet are very much like straight lines. Then, the circlet ADCE being
360° the arc FDG will be 9o° 35’, as reducing the mean motion by MN’s 1° 40,
ABC being 2°20". GCEP will be 155° 34, increasing [the mean motion] by MO’s
1° 9". Consequently the remaining 113° 51 of PAF will also enhance [the mean
motion] by the remainder ON’s 31’, of which AB is similarly 70". The whole arc
DGCEP will be 200° 51%" and EP, the excess over a semicircle, will be 20° 51%".
Hence, according to the Table of the Straight Lines Subtended in a Circle, as a
straight line BO will have 356 units, of which AB is 1,000. But if AB is 70", BO
will be about 24, and BM was taken as 50". Therefore MBO as a whole is 74" and
the remainder NO is 26”. But previously MBO was 1° 9’; and the remainder NO,
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31’ In the latter case there is a shortage of 5', which are in excess in the former
case. Therefore the circlet ADCE must be rotated until both cases are adjusted.
This will happen if we make the arc DG 42%°, that the other arc DF is 48°5". For

in this way, it will be seen, both errors are straightened out, and so are all the other

data. Starting from D, the extreme limit of the re-
tardation, the nonuniform motion in the first inter-
val will comprise the whole arc DGCEPAF of 311°
55; in the second interval, DG of 42%:°% and in the
third interval, DGCEP of 198° 4". And in the first

interval, according to the foregoing demonstration,

BN will be an additive prosthaphaeresis of 52°, of

which AB is 70’ in the second interval MB will be
a subtractive prosthaphaeresis of 47%"; and in the third interval BO will again be
an additive prosthaphaeresis of about 21". Therefore in the first interval MN as a
whole amounts to 1° 40’, and in the second interval MBO as a whole amounts to
1° 9, in quite exact agreement with the observations. Hence the simple anomaly
in the first interval is clearly 155° 57%"; in the second interval, 21° 157; and in the

third interval, 99°2". Q.E.D.

What is the greatest variation in the intersections of the equator and
ecliptic’c  Chapter 10.
My discussion of the variation in the obliquity of the ecliptic and equator will

be confirmed in like manner and found to be accurate. For in Ptolemy we had

for the second year of Antoninus [Pius] e
1 1/,0 R“"-\.
the corrected simple anomaly as 21%°, \
with which the greatest obliquity of 23° E .
51" 20" was found. From this situation / \‘i,f
to my observation there are about 1,387 x'l B =
= G_ |

years, during which the extent of the
simple anomaly is computed as 144° 4, and at this time the obliquity is found to
be about 23° 28%%,

On this basis reproduce ABC as an arc of the ecliptic, or instead as a straight
line on account of its small size. On ABC repeat the semicirclet of the simple
anomaly with its pole at B, as before. Let A be the limit of the greatest, and C
of the smallest, inclination, the difference between them being the object of
our inquiry. Therefore take AE as an arc of 21°15” on the circlet. ED, the rest of
the quadrant, will be 68° 45". EDF as a whole will be computed as 144° 4" and by
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subtraction DF will be 75°19". Drop EG and FK perpendicular to the diameter
ABC. On account of the variation in the obliquity from Ptolemy to us, GK will
be recognized as a great circle arc of 22" 56”. But GB, being similar to a straight
line, is half of the chord subtending twice ED or its equal, and is 932 units, of
which AC as a diameter is 2,000. Furthermore, KB, being half of the chord
subtending twice DF, would be 967 of the same units. The sum GK becomes
1,899 units, of which AC is 2,000. But when GK is reckoned as 22" 56", AC will
be approximately 24, the difference between the greatest and smallest obliq-
uity, the difference which we have been seeking. Clearly, therefore, the obliq-
uity was greatest between Timocharis and Ptolemy, when it was fully 23° 52/,

and now it is approaching its minimum of 23°28".

From this scheme there are also obtained any intermediate obliquities of these

circles by the same method as was explained with regard to precession [I1I, 8].

Determining the epochs of the uniform motions of the equinoxes and
anomaly. Chapter 11.

Now that I have explained all these topics in this manner, it remains for me to
determine, with regard to the motions of the vernal equinox, the places which
some call the “epochs,” from which are taken the computations for any given
time whatever. The absolute beginning of this calculation was established by
Ptolemy [ Syntauxis, I11,7] as the start of the reign of Nabonassar of the Babylonians.
Most, misled by the similarity of the name, have thought that he was
Nebuchadnezzar, who lived much later, as is shown by an examination of the
chronology and by Ptolemy’s computation. According to historians, Nabonassar
as the ruler was followed by Shalmaneser, king of the Chaldeans. Preferring a
better known period, however, I thought it suitable to commence with the first
Olympiad, which is found to have preceded Nabonassar by 28 years. It began
with the summer solstice, when Sirius rose for the Greeks and the Olympic games
were celebrated, as Censorinus and other recognized authorities have stated.
Hence, according to a more precise chronological calculation, which is necessary
for computing the heavenly motions, there are 27 years and 247 days from the first
Olympiad at noon on the first day of the Greek month Hecatombaeon until
Nabonassar and noon on the first day of the Egyptian month Thoth. From that
time to the death of Alexander there are 424 Egyptian years. From the death of
Alexander there are 278 Egyptian years, 1182 days, to the beginning of the years

of Julius Caesar at midnight preceding 1 January, when Julius Caesar commenced
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the year which he instituted. As high priest, he established this year when he was
consul for the third time, his colleague being Marcus Aemilius Lepidus. Follow-
ing this year, so ordained by Julius Caesar, the subsequent years are called “Julian.”
From Caesar’s fourth consulship to Octavian Augustus, the Romans reckon 18
such years up to 1 January, although it was on 17 January that the son of the
deified Julius Caesar, on the motion of Munatius Plancus, was granted the title
Emperor Augustus by the senate and the other citizens during his seventh con-
sulship, his colleague being Marcus Vipsanius [Agrippa]. The Egyptians, how-

ever, because they passed under Roman rule after the death of Antony

and Cleopatra two years earlier, count 15 years, 246%2 days, to noon of the first day
of the month Thoth, which was 30 August for the Romans. Accordingly there
are 27 years according to the Romans, but according to the Egyptians 29 of their
years, 130%2 days, from Augustus to the years of Christ, which likewise begin in
January. From that time to the second year of Antoninus [Pius] when Claudius
Ptolemy catalogued the positions of the stars observed by himself, there are 138
Roman years, 55 days; the Egyptians add 34 days for these years. To this time
from the first Olympiad there is a total of 913 years, 1o days. In this period the
uniform precession of the equinoxes is 12° 44, and the simple anomaly is 95° 44.
But in the second year of Antoninus [Pius] as is known [Ptolemy, Synzaxis, VII,
5], the vernal equinox preceded the first of the stars in the head of the Ram by 6°
40". Since the double anomaly was 42%° [I1I, 9], the subtractive difference be-
tween the uniform and the apparent motion was 48". When this difference is
restored to the apparent motion of 6° 40, the mean place of the vernal equinox is
established as 7°28". If we add the 360° of a circle to this place and subtract 12° 44’
from the sum, we shall have for the first Olympiad, which began at noon on the
first day of the Athenian month Hecatombaeon, the mean place of the vernal
equinox at 354° 44, so that it then followed the first star of the Ram by 5°16".
Similarly, if 95° 45" are subtracted from 21° 15" of the simple anomaly, the remain-
der for the same beginning of the Olympiads will be 285°30" as the position of the
simple anomaly. Again, by adding the motions accomplished during the various
intervals, and always eliminating 360° as often as they accumulate, we shall have
as the positions or epochs, for Alexander, 1° 2" for the uniform motion, and 332°
52 for the simple anomaly; for Caesar, 4° 55" for the mean motion, and 2°2” for the
anomaly; for Christ, 5°32" as the position of the mean motion, and 6° 45" for the
anomaly; and so on for the others we shall take the epochs of the motions for

whatever beginning is chosen for an era.
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Computing the precession of the vernal equinox and the

obliquity. Chapter 2.

Then, whenever we want to obtain the position of the vernal equinox, if the
years from the chosen starting point to the given time are nonuniform, like the
Roman years which we commonly use, we shall convert them into uniform or
Egyptian years. For in computing uniform motions, I shall use no years other
than the Egyptian, for the reason which I mentioned [near the end of 111, 6].

In case the number of years exceeds 60, we shall divide it into periods of 60
years. When we start to consult the Tables of the Motions [of the Equinoxes,
tollowing III, 6] for these periods of 60 years, we shall at that time bypass as
extraneous the first column occurring in the Motions. Beginning with the sec-
ond column, that of the degrees, if there are any [entries], we shall take them as
well as the remaining degrees and accompanying minutes sixtyfold. Then, en-
tering the Tables a second time, for the years remaining [after the elimination
of whole periods of 60 years] we shall take the clusters of 60° plus the degrees
and minutes as they are recorded from the first column on. We shall do like-
wise with regard to the days and periods of 6o days when we wish to add to
them uniform motions in accordance with the Tables of Days and Minutes.
Nevertheless in this operation minutes of days, or even whole days, would be
disregarded without any harm on account of the slowness of these motions,
since it is a question in the daily motion only of seconds or sixtieths of seconds.
When we have collected all these entries together with their epoch, by adding
separately those of each kind and eliminating every group of six clusters of 60°,
if there are more than 360°, for the given time we shall have the mean place of
the vernal equinox as well as the distance by which it precedes the first star of
the Ram, or by which the star follows the equinox.

We shall obtain the anomaly too in the same way. With the simple anomaly,
we shall find located in the last column of the Table of Prosthaphaereses [fol-
lowing I11, 8] the proportional minutes, which we shall keep to one side. Then,
with the double anomaly we shall find in the third column of the same Table
the Prosthaphaeresis, that is, the degrees and minutes by which the true mo-
tion differs from the mean motion. If the double anomaly is less than a semicir-
cle, we shall subtract the prosthaphaeresis from the mean motion. But if the

double anomaly has more than 180° and exceeds a semicircle, we shall add

it to the mean motion. This sum or difference will contain the true and appar-

ent precession of the vernal equinox, or conversely the distance at that time of
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the first star of the Ram from the vernal equinox. But if you are looking for the
position of any other star, add the longitude assigned to it in the Catalogue of
the Stars.

Since operations usually become clearer through examples, let us undertake
to find the true place of the vernal equinox, the distance of the Spike of the
Virgin from it, and the obliquity of the ecliptic for 16 April 1525 A.D. In 1,524
Roman years, 106 days, from the beginning of the years of Christ until this
time, obviously there are 381 leap days, that is, 1 year, 16 days. In uniform years,
the total becomes 1,525 years, 122 days, equal to 25 periods of 6o years plus 25
years, and two periods of 60 days plus 2 days. In the Table of the Uniform
Motion [following III, 6] 25 periods of 60 years correspond to 20° 55" 2”5 25
years, to 20” 55”; 2 periods of 60 days, to 16; and the remaining 2 days, to sixti-
eths of seconds. All these values, together with the epoch, which was 5°32" [end
of I1I, 11], amount to 26° 48" as the mean precession of the vernal equinox.

Similarly, in 25 periods of 60 years the motion of the simple anomaly has
two clusters of 60° plus 37°15"3"; in 25 years, 2° 37 15”'; in two periods of 60 days,
2" 4"y and in 2 days, 2”. These values, together with the epoch, which is 6° 45’
[end of 11, 11], amount to two clusters of 60° plus 46° 40" as the simple anomaly.
The proportional minutes corresponding to it in the last column of the Table of
Prosthaphaereses [following II1, 8] will be kept for the purpose of investigating
the obliquity, and in this instance only 1" is found. Then with the double anomaly,
which has 5 clusters of 60° plus 33°20’, I find a prosthaphaeresis of 32, which is
additive because the double anomaly is greater than a semicircle. When this
prosthaphaeresis is added to the mean motion, the true and apparent preces-
sion of the vernal equinox comes out as 27° 21". To this, finally, if I add 170° the
distance of the Spike of the Virgin from the first star of the Ram, its position

with reference to the vernal equinox will be to the east, at 17° 21’

within the Balance, where it was found at about the time of my observation
[reported in III, 2].

The ecliptic’s obliquity and declinations are subject to the following rule.
When the proportional minutes amount to 6o, the increases recorded in the
Table of Declinations [following II, 3], I mean, the differences between the
maximum and minimum obliquity, are added as a block to the individual de-
grees of declination. But in this instance one of those [proportional] minutes
adds only 24" to the obliquity. Therefore the declinations of the degrees of the

ecliptic, as entered in the Table, remain unchanged at this time because the
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minimum obliquity is now approaching us, whereas at other times the declina-
tions are more perceptibly variable.

Thus, for example, if the simple anomaly is 99° as it was 880 Egyptian
years after Christ, it is linked with 25 proportional minutes. But 60":24" (24’
being the difference between the greatest and smallest obliquity) = 25":10". When
these 10" are added to 28’, the sum is 23° 38’, the obliquity as it existed at that
time. Then if T also want to know the declination of any degree on the ecliptic,
for example, 3° within the Bull, which is 33° from the equinox, in the Table [of
Declinations of the Degrees of the Ecliptic, after I, 3], I find 12° 32", with a
difference of 12". But 60:25 = 12:5. When these 5" are added to the degrees of
declination, the total is 12° 37" for 33° of the ecliptic. We can use the same method
employed for the angles of intersection between the ecliptic and equator also
for the right ascensions (unless we prefer the ratios of spherical triangles), ex-
cept that we must always subtract from the right ascensions what is added to
the angles of intersection, in order that all the results may come out chrono-

logically more precise.

The length and nonuniformity of the solar year. Chapter 13.

The statement that the equinoctial and solstitial precession (which, as I said
[beginning of I11, 3], results from the deflection of the earth’s axis) proceeds in
this manner will be confirmed also by the annual motion of the earth’s center,
as this motion appears in the sun, the topic which I must now discuss. When
computed from either of the equinoxes or solstices, the length of the year be-
comes a variable, as must of course follow, on account of the nonuniform shift
in those cardinal points, these phenomena being interconnected.

We must therefore distinguish

the seasonal year from the sidereal year, and define them. I term that year “natural”
or “seasonal” which marks the four annual seasons for us, but that year “side-
real” which returns to one of the fixed stars. The natural year, which is also
called “tropical,” is nonuniform, as the observations of the ancients make abun-
dantly clear. For it contains a quarter of a day more than 365 whole days, ac-
cording to the determinations made by Callippus, Aristarchus of Samos, and
Archimedes of Syracuse, who in the Athenian manner put the beginning of the
year at the summer solstice. Claudius Ptolemy, however, being aware that the
pinpointing of a solstice is difficult and uncertain, did not have enough confi-

dence in their observations, and preferred to rely on Hipparchus. The latter left
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records not only of solar solstices but also of equinoxes in Rhodes, and declared
that the % lacked a small fraction. This was later established as %00¢ by Ptolemy
in the following way [ Syntaxis, 111, 1].

He takes the autumnal equinox which Hipparchus observed very carefully
at Alexandria in the 177th year after the death of Alexander the Great on the
third intercalary day at midnight, which was followed by the fourth intercalary
day according to the Egyptians. Then Ptolemy adduces an autumnal equinox
observed by himself at Alexandria in the third year of Antoninus [Pius], which
was the 463rd year after Alexander’s death, on the ninth day of Athyr, the third
Egyptian month, about one hour after sunrise. Between this observation and
Hipparchus’, accordingly, there were 285 Egyptian years, 70 days, 7%dours. On
the other hand, there should have been 71 days, 6 hours, if the tropical year had
been %! more than [365] whole days. In 285 years, therefore, %0 were lacking.
Hence it follows that a whole day drops out in 300 years.

Ptolemy derives the like conclusion also from the vernal equinox. For he
recalls the one reported by Hipparchus in the 178th year after Alexander, on the
27th day of Mechir, the sixth Egyptian month, at sunrise. Ptolemy himself
finds the vernal equinox in the 463rd year after Alexander, on the 7th day of
Pachon, the ninth Egyptian month, a little more than an hour after noon. In
285 years, 1%0¢ are similarly lacking. Aided by this information, Ptolemy meas-
ured the tropical year as 365 days, 14 minutes of a day, 48 seconds of a day.

Subsequently at Raqqa in Syria

with no less diligence Al-Battani observed the autumnal equinox in the 1,206th
year after the death of Alexander. He found that it occurred at about 7%chours
during the night following the seventh day of the month Pachon, that is, 430
hours before daylight on the eighth day [of Pachon]. Then he compared his
own observation with the one made by Ptolemy in the third year of Antoninus
[Pius] one hour after sunrise at Alexandria, which is 10° west of Raqqa. He
reduced Ptolemy’s observation to his own Raqqa meridian, where Ptolemy’s
equinox would have had to occur 125 hours after sunrise. Therefore, in the in-
terval of 743 uniform years there was a surplus of 178 days, 17%hours, instead of
an accumulation of quarter-days totaling 185% days. Since 7 days, %eef an hour
were missing it was apparent that the %4 lacked Yi06?. He accordingly divided 7
days, %0f an hour, by 743 in agreement with the number of years, the quotient
being 13 minutes, 36 seconds. Subtracting this quantity from %, he asserted

that the natural year contains 365 days, 5 hours, 46 minutes, 24 seconds.
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I too observed the autumnal equinox at Frombork in 1515 A.D. on 14 Sep-
tember. This was in the 1,840th Egyptian year after the death of Alexander, on
the sixth day of the month Phaophi, % hour after sunrise. However, Raqqa lies
east of my area by about 25°, equal to 1% hours. Therefore, in the interval be-
tween my equinox and Al-Battani’s, over and above 633 Egyptian years there
were 153 days, 634 hours, instead of 158 days, 6 hours. From that observation by
Ptolemy at Alexandria to the time of my observation, reduced to the same
place, there are 1,376 Egyptian years, 332 days, % hour, since the difference
between Alexandria and us is about an hour. Therefore, in 633 years from the
time of Al-Battani to us, 4 days, 22 % hours, would have been lacking, and one
day in 128 years. On the other hand, in 1,376 years since Ptolemy, about 12 days
would have been missing, and one day in 115 years. In both instances the year

has again turned out to be nonuniform.

I also observed the vernal equinox which occurred in the following year,
1516 A.D., 4%5 hours after the midnight preceding 11 March. From that vernal
equinox of Ptolemy (the meridian of Alexandria being compared with ours)
there are 1,376 Egyptian years, 332 days, 16% hours. Hence it is also clear that
the intervals of the vernal and autumnal equinoxes are unequal. The solar year,
taken in this way, is very far from being uniform.

For in the case of the autumnal equinoxes, between Ptolemy and us (as was
pointed out) by comparison with the uniform distribution of the years the ¥4
lacked %108, This deficiency disagrees with Al-Battani’s equinox by half a day.
On the other hand, what holds true for the period from Al-Battani to us (when
the 4! must have lacked %125%) does not fit Ptolemy, for whom the computed
result precedes his observed equinox by more than a whole day, and Hipparchus’
by more than two days. In like manner a computation based on the period from
Ptolemy to Al-Battani exceeds Hipparchus’ equinox by two days.

The uniform length of the solar year, therefore, is more correctly derived
from the sphere of the fixed stars, as was first discovered by Thabit ibn Qurra.
He found its length to be 365 days, plus 15 minutes of a day and 23 seconds of a
day, or approximately 6 hours, 9 minutes, 12 seconds. He probably based his
reasoning on the fact that when the equinoxes and solstices recurred more slowly,
the year appeared longer than when they recurred more swiftly, in accordance
with a definite ratio, moreover. This could not happen unless a uniform length
were available by comparison with the sphere of the fixed stars. Consequently

we must not heed Ptolemy in this regard. He thought that it was ridiculous and
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outlandish for the annual uniform motion of the sun to be measured by its
return to any of the fixed stars, and that this was no more appropriate than if it
were done by someone with reference to Jupiter or Saturn [Syntaxis, 111, 1].
Therefore the explanation is at hand why the tropical year was longer before
Ptolemy, whereas after him it became shorter in a variable diminution.

But also in connection with the starry or sidereal year a variation can occur.
Nevertheless, it is limited and far smaller than the one which I just explained.
The reason is that this same motion of the earth’s center, which appears in the

sun, is also nonuniform, with another twofold variation.

The first of these variations is simple, having an annual period. The second,
which by its alternations produces an inequality in the first, is perceived not at
once but after a long passage of time. Therefore the computation of the uni-
form year is neither elementary nor easy to understand. For suppose that some-
body wished to derive the uniform year merely from the definite distance of a
star having a known position. This can be done by using the astrolabe with the
moon as intermediary, the procedure I explained in connection with Regulus in
the Lion [II, 14]. Variation will not be completely avoided, unless at that time
on account of the earth’s motion the sun either has no prosthaphaeresis or
undergoes a similar and equal prosthaphaeresis at both cardinal points. If this
does not happen, and if there is some variation in the nonuniformity of the
cardinal points, it will be evident that a uniform revolution certainly does not
occur in equal times. On the other hand, if at both cardinal points the entire
variation is subtracted or added proportionally, the process will be perfect.
Furthermore, an understanding of the nonuniformity requires prior knowl-
edge of the mean motion, which we seek for that reason, being engaged therein
like Archimedes in squaring the circle. Nevertheless, for the purpose of even-
tually reaching the solution of this problem, I find that there are altogether four
causes of the apparent nonuniformity. The first is the nonuniformity in the
precession of the equinoxes, which I have explained [III, 3]. The second is the
inequality in the arcs of the ecliptic which the sun is seen to traverse, a nearly
annual inequality. This is also subject to a variation by the third cause, which I
shall call the “second inequality.” The last is the fourth, which shifts the higher
and lower apsides of the earth’s center, as will be made clear below [III, 20]. Of
all these [four causes], Ptolemy [Synzaxis, 111, 4] knew only the second, which
by itself could not have produced the annual nonuniformity, but does so, rather,

when intermingled with the others. However, in order to demonstrate the dif-
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ference between uniformity and appearance in the sun, an absolutely precise
measurement of the year seems unnecessary. On the contrary, for this demon-
stration it would be satisfactory to take as the length of the year 365%4 days, in
which the motion of the first inequality is completed. For, what falls so little
short of a complete circle, disappears entirely when absorbed in a smaller mag-
nitude. But for the sake of orderly procedure and ease of comprehension I now
set forth the uniform motions of the annual revolution of the earth’s center.
Later I shall add to them by distinguishing between the uniform and apparent
motions on the basis of the required proofs [II1, 15].

The uniform and mean motions in the revolutions of the earth’s

center. Chapter 14.

The length of the uniform year, I have found, is only 1'%o day-seconds longer
than Thabit ibn Qurra’s value [III, 13]. Thus it is 365 days plus 15 day-minutes,
24 day-seconds, and 10 sixtieths of a day-second, equal to 6 uniform hours, 9
minutes, 40 seconds, and the precise uniformity of the year is clearly linked
with the sphere of the fixed stars. Therefore, by multiplying the 360° of a circle
by 365 days, and dividing the product by 365 days, 15 day-minutes, 24'%o day-
seconds, we shall have the motion in an Egyptian year as 5 X 60°+ 59° 44" 49"
7" 4. In 60 similar years the motion is, after the elimination of whole circles,
5 X 60°+ 44° 49" 77 4" Furthermore, if we divide the annual motion by 365
days, we shall have the daily motion as 59" 8" 11" 22”"”". By adding to this value
the mean and uniform precession of the equinoxes [III, 6], we shall obtain also
the uniform annual motion in a tropical year as 5 X 60°+59° 4539 19" 9",
and the daily motion as 59" 8" 19" 37" For this reason we may call the former
solar motion “simple uniform,” to use the familiar expression, and the latter
motion “composite uniform.” I shall also set them out in Tables, as I have done
for the precession of the equinoxes [following III, 6]. Appended to these Tables

is the uniform solar motion in anomaly, a topic I shall discuss later on [III, 18].
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Table of the Sun’s Simple Uniform Motion
in Years and Periods of Sixty Years

Christian Era 272° 317

Motion
Years | 60° °

I 5 59 44 49 7
2 5 59 29 | 38 4
3 5 59 14 27 21
4 5 58 59 16 28
5 5 8 | 44 5 35
6 5 58 28 54 42
7 5 58 13 43 | 49
8 5 57 | 58 | 32 | 56
9 5 57 43 22 3
10 5 57 28 I 10
II 5 57 13 o] I7
12 5 56 | 57 | 49 | 24
13 5 56 | 42 | 38 | 31
14 5 56 | 27 | 27 | 38
15 5 56 12 16 46
16 5 55 | 57 5 53
17 5 55 41 55 o
18 5 55 | 26 | 44 7
19 5 55 I 33 14
20 5 54 56 22 2I
21 5 54 41 I 28
22 5 54 26 o 35
23 5 54 10 49 42
24 5 53 55 38 | 49
25 5 53 | 40 | 27 | 56
26 5 53 | 25 | 17 3
27 5 53 10 6 10
28 5 52 54 55 17
29 5 52 39 44 24
30 5 52 24 33 32

Motion
Years | 60° °
31 5 52 9 22 | 39
32 5 st 54 ot 46
33 5 st 39 o 53
34 5 st 23 | 50 o
35 5 3 8 39 7
36 5 50 | 53 28 14
37 5 50 | 38 7 21
38 5 50 23 6 28
39 5 50 7 55 35
40 5 49 | 52 | 44 | 42
41 5 49 | 37 | 33 | 49
42 5 49 22 22 56
43 5 49 7 2 3
44 5 48 52 1 10
45 5 48 | 36 | 50 18
46 5 48 21 39 25
47 5 48 6 28 32
48 5 47 St 17 39
49 5 47 | 36 6 46
50 5 47 | 20 | 55 53
5t 5 47 5 45 o
52 5 46 | 50 | 34 7
53 5 46 | 35 23 14
54 5 46 20 12 21
55 5 46 5 I 28
56 5 45 | 49 | 50 | 35
57 5 45 | 34 | 39 | 42
58 5 45 19 28 49
59 5 45 4 7 | 56
60 5 44 | 49 7 4
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Table of the Sun’s Simple Uniform Motion in Days,
Periods of Sixty Days and Minutes of a Day

Motion Motion
Days | 60° ° Days | 60° °
I o o 59 8 11 31 o 30 33 13 52
2 o I 58 16 22 32 o 3I 32 22 3
3 o 2 57 24 34 33 o 32 3r 30 15
4 o 3 6 | 32 | 45 34 o 33 | 30 | 38 | 26
5 o 4 55 | 40 | 56 35 o 34 | 29 | 46 | 37
6 o 5 54 | 49 8 36 o 35 | 28 | 54 | 49
7 o 6 31 57 | 19 37 o | 36 | 28 3 o
8 o 7 53 5 30 38 o 37 27 I I
9 o 8 52 13 42 39 o 38 26 19 23
10 o 9 5t 21 53 40 o 39 25 27 34
11 o 10 50 30 5 41 o 40 24 35 45
12 o I 49 38 16 42 o 41 23 43 57
13 o 12 48 46 27 43 o 42 22 52 8
14 o 13 47 54 39 44 o 43 22 o 20
15 o 14 47 2 50 45 o 44 21 8 31
16 o 15 46 11 I 46 o 45 20 16 42
17 o 6 | 45 | 19 | 1B 47 o 46 | 19 | 24 | 54
18 o 17 44 27 24 48 o 47 18 33 5
19 o B | 43 | 35 | 35 49 o 48 | 17 | 41 | 16
20 o 19 42 43 47 50 o 49 16 49 28
21 o 20 41 51 58 51 o 50 15 57 39
22 o 2I 41 o 9 52 o [3 15 5 50
23 o 22 40 8 21 53 o 52 14 14 2
24 o 23 39 16 32 54 o 53 13 22 13
25 ) 24 | 38 24 | 44 55 o 54 2 30 25
26 o 25 | 37 | 32 | 55 56 o 35 mo| 38 | 36
27 o 26 36 41 6 57 o 56 10 46 47
28 ° 27 | 35 | 49 | 18 58 o 57 9 54 | 59
29 o 28 | 34 | 57 | 29 59 o 58 9 3 10
30 o 29 34 5 41 60 o 59 8 I 22
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Table of the Sun’s Uniform Composite Motion page 82v
in Years and Periods of Sixty Years
Egyp- Motion Egyp- Motion
tian tian
Years 600 o ’ s, rrs Years 600 o

I 5 59 | 45 | 39 19 31 5 52 35 18 53
2 5 59 31 18 38 32 5 52 20 58 12
3 5 59 16 57 | 57 33 5 52 6 37 | 3t
4 5 59 2 37 | 16 34 5 st | 52 | 16 51
5 5 8 | 48 | 16 35 35 5 51 37 | 6 | 10
6 5 58 33 55 54 36 5 st 23 35 29
7 5 58 19 35 14 37 5 3 9 14 48
8 5 58 5 14 33 38 5 50 54 54 7
9 5 57 | 50 | 53 52 39 5 50 | 40 | 33 26
10 5 57 36 33 I 40 5 50 26 ) 46
II 5 57 22 12 30 41 5 50 II 52 5
12 5 57 7 ST | 49 42 5 49 | 57 3t 24
3 5 56 53 31 8 43 5 49 | 43 0 | 43
14 5 56 39 10 28 44 5 49 28 50 2
15 5 6 | 24 | 49 | 47 45 5 49 | 14 | 29 21
16 5 56 10 29 6 46 5 49 o 8 40
17 5 55 | 56 8 25 47 5 48 | 45 | 48 )
18 5 55 41 47 | 44 48 5 48 31 27 19
19 5 55 27 | 27 3 49 5 48 | 17 6 38
20 5 55 3 6 23 50 5 48 2 45 | 57
21 5 54 58 45 42 5t 5 47 | 48 25 16
22 5 54 | 44 | 25 I 52 5 47 | 34 4 35
23 5 54 | 30 4 20 53 5 47 | 19 | 43 | 54
24 5 54 15 43 | 39 54 5 47 5 23 14
25 5 54 I 22 | 8 55 5 46 | 51 2 33
26 5 3| 47 2 17 56 5 46 | 36 | 41 | 52
27 5 53 32 41 37 57 5 46 22 21 11
28 5 53 18 20 56 58 5 46 8 o 30
29 5 53 4 o 15 59 5 45 53 39 | 49
30 5 52 | 49 | 39 | 34 60 5 45 | 39 19 9
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Table of the Sun’s Uniform Composite Motion in Days,
Periods of Sixty Days and Minutes of a Day

Motion Motion
Days | 60° ° Days | 60° °
I o o 59 8 19 31 o 30 33 18 8
2 o I 58 16 39 32 o 31 32 26 27
3 o 2 57 24 58 33 o 32 3t 34 47
4 o 3 6 | 33 | 18 34 o 33 | 30 | 43 6
5 o 4 55 41 38 35 o 34 29 51 26
6 o 5 54 | 49 | 57 36 o 35 | 28 | 59 | 46
7 o 6 53| 8 | 17 37 o | 36 | 28 8 5
8 o 7 53 6 36 38 o 37 27 16 25
9 o 8 52 | 14 | 56 39 o 38 | 26 | 24 | 45
10 o 9 5t 23 16 40 o 39 25 33 4
11 o 10 50 31 35 41 o 40 24 41 24
12 o I 49 39 55 42 o 41 23 49 43
13 o 12 48 48 15 43 o 42 22 58 3
14 o 3| 47 | 56 | 34 44 | o 43 | 22 6 23
15 o 4 | 47 | 4 54 45 O | 44 | 2 | 14 | 42
16 o 15 46 13 13 46 o 45 20 23 2
17 o 16 45 21 33 47 o 46 19 31 21
18 o 17 | 44 | 29 53 48 o 47 | 18 39 41
19 o 18 43 38 12 49 o 48 17 48 I
20 o 19 42 46 32 50 o 49 16 56 20
21 o 20 41 54 51 51 o 50 16 4 40
22 o 21 41 3 11 52 o 51 15 13 o
23 o 22 40 11 31 53 o 52 14 21 19
24 o 23 39 19 50 54 o 53 13 29 39
25 o 24 38 28 10 55 o 54 12 37 58
26 o 25 37 36 30 56 o 55 11 46 18
27 o 26 | 36 | 44 | 49 57 o 56 | o | 54 | 38
28 o 27 | 35 | 53 9 58 o 57 | 10 2 57
29 o 28 35 I 28 59 o 58 9 II 17
30 o 29 | 34 9 48 60 o 59 8 19 37
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Table of the Sun’s Uniform Motion in Anomaly page 83v

in Years and Periods of Sixty Years Christian Era 211°19”
Egyp- Motion Egyp- Motion
tian tian
Years 600 o ’ ,s rrs Years 600 o
59 | 44 | 24 | 46 3 st | 56 | 48 | 1

I 5 5
2 5 59 28 49 33 32 5 3 41 2 58
3 5 59 3 4 | 20 33 5 st 25 | 37 | 45
4 5 58 57 39 7 34 5 3 10 2 32
5 5 58 42 3 54 35 5 50 54 27 19
6 5 58 26 28 41 36 5 50 38 52 6
7 5 58 10 53 27 37 5 50 23 16 52
8 5 57 55 18 14 38 5 50 7 41 39
9 5 57 1 39 | 43 I 39 5 49 | 52 6 26
10 5 57 | 24 7 48 40 5 49 | 36 | 31 3
II 5 57 8 32 35 41 5 49 | 20 | 56 o
12 5 56 52 57 22 42 5 49 5 20 | 47
3 5 6 | 37 | 22 8 43 5 48 | 49 | 45 | 33
4 5 56 21 | 46 55 44 5 48 | 34 | 10 | 20
15 5 56 6 II 42 45 5 48 18 35 7
16 5 55 50 | 36 | 29 46 5 48 2 59 | 54
17 5 55 35 I 16 47 5 47 | 47 | 24 | 41
18 5 55 19 26 3 48 5 47 | 3t | 49 | 28
19 5 55 3 50 | 49 49 5 47 | 16 4 | 14
20 5 54 | 48 15 36 50 5 47 o 39 I
21 5 54 | 32 | 40 | 23 st 5 46 | 45 3 48
22 5 54 17 5 10 52 5 46 | 29 | 28 35
23 5 54 1 29 57 53 5 46 3 53 22
24 5 53 45 54 | 44 54 5 45 58 18 9
25 5 3 | 30 | 19 | 30 55 5 45 | 42 | 42 | 55
26 5 53 4 | 44 | 17 56 5 45 27 7 42
27 5 52 | 59 9 4 57 5 45 II 32 | 29
28 5 52 | 43 | 33 51 58 5 44 | 55 57 | 16
29 5 52 27 58 38 59 5 44 | 40 22 3

30 5 52 12 23 25 60 5 44 24 46 50

176 Nicolaus Copernicus. De Revolutionibus Orbium Ceelestium, Libri VI. Nuremberg, 1543. THE WARNOCK LIBRARY



The Sun’s Anomaly in Days and Periods of Sixty Days
Motion Motion
Days | 60° ° Days | 60° °

I o o 59 8 7 31 o 30 33 I 48

2 o I 58 16 14 32 o 31 32 19 55
3 o 2 57 24 22 33 o 32 31 28 3
4 o 3 6 | 32 | 29 34 o 3 | 30 | 36 | 10
5 o 4 55 | 40 | 36 35 o | 34 | 29 | 44 | 17
6 o 5 54 | 48 | 44 36 o 35 | 28 | 52 | 25
7 o 6 53 56 51 37 o 36 28 o 32
8 o 7 53 4 58 38 o 37 | 27 8 39
9 o 8 52 13 6 39 o 38 26 16 47
10 o) 9 51 21 3 40 o 39 25 24 54
I o) 10 50 29 21 41 o 40 24 33 2
2 o) I 49 37 28 42 o 41 23 41 9
13 o 2 | 48 | 45 | 35 43 o 42 | 22 | 49 | 16
4 | o B3 | 47 | 3| 43 44 | o | 43 | 2 | 57 | 24
15 o 4 47 I 50 45 o 44 21 5 3t
16 o 15 46 9 57 46 o 45 20 13 38
7 o 16 45 18 5 47 o 46 19 21 46
18 o 17 44 26 12 48 o 47 18 29 53
19 o B | 43 | 34 | 19 49 o 48 17 | 38 o
20 o 19 42 42 27 50 o 49 16 46 8
21 o) 20 41 50 34 51 o 50 15 54 15
22 o) 21 40 58 42 52 o 51 15 2 23
23 o 22 40 6 49 53 o 52 14 10 30
24 o 23 39 14 56 54 o 53 3 18 37
25 o 24 38 23 4 55 o 54 2 26 45
26 o 25 37 31 11 56 o 55 11 34 52
27 o 26 36 39 18 57 o 56 10 42 59
28 o 27 | 35 | 47 | 26 58 o 57 9 st 7
29 o 28 | 34 | 55 33 59 o 58 8 59 14
30 o) 29 34 3 41 60 o 59 8 7 22

Preliminary theorems for proving the nonuniformity of the sun’s apparent
motion. Chapter 15.
For the sake of better comprehension of the sun’s apparent nonuniformity, how-
ever, I shall show even more clearly that with the sun at the universe’s mid-
point, about which as center the earth revolves, if the distance between the sun
and the earth is, as I have said [I, 5, 10], imperceptible in comparison with the
immensity of the sphere of the fixed stars, the sun will appear to move uni-
formly with respect to any given point or star on that sphere.

Let AB be a great circle of the universe in the place of the ecliptic. Let C be
its center, where the sun is located. With radius CD, the distance sun-earth, in

comparison with which the height of the universe is immense, in that same
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plane of the ecliptic describe DE as the cir-
cle in which the annual revolution of the
earth’s center is performed. I say that the sun
will appear to move uniformly with respect
to any given point or star on the circle AB.
Let the given point be A, where the sun is
seen from the earth. Let the earth be at D.
Draw ACD. Now let the earth move through
any arc DE. Draw AE and BE from E, the
endpoint of the earth’s [motion]. Therefore

the sun will now be seen from E at point B.

Since AC is immense in comparison with CD

or its equivalent CE, AE also will be immense
as compared with CE. For, on AC take any point F, and join EF. Then from C
and E, the endpoints of the base, two straight lines fall outside triangle EFC on
point A. Therefore, by the converse of Euclid’s Elements, 1, 21, angle FAE will
be smaller than angle EFC. Consequently, when the straight lines are immensely
extended, they will ultimately comprise CAE as an angle so acute that it can no
longer be perceived. CAE constitutes the difference by which angle BCA ex-
ceeds angle AEC. These angles even seem equal because the difference [be-
tween them] is so slight. The lines AC and AE seem parallel, and the sun

seems to move uniformly with respect to any point on the sphere

of the stars, just as if it revolved around E as center. Q.E.D.

The sun’s [motion], however, is demonstrably nonuniform, because the
motion of the earth’s center in its annual revolution does not occur precisely
around the center of the sun. This can of course be explained in two ways,

either by an eccentric circle, that is, a circle whose

center is not identical with the sun’s center, or by an
epicycle on a concentric circle [that is, a circle whose
center is identical with the sun’s center, and functions
as the epicycle’s deferent].

The explanation by means of an eccentric pro-

ceeds as follows. In the plane of the ecliptic let ABCD

be an eccentric. Let its center E lie at no negligible
distance from F, the center of the sun or of the universe. Let AEFD, the diam-
eter of the eccentric, pass through both centers. Let A be the apogee, which in
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Latin is called the “higher apse,” the position farthest from the center of the
universe. On the other hand, let D be the perigee, which is the “lower apse,” the
position nearest [to the center of the universe]. Then, while the earth moves
uniformly on its circle ABCD about center E, from F (as I just said) its motion
will appear nonuniform. For, if we take AB and CD as equal arcs, and draw the
straight lines BE, CE, BE, and CF, angles AEB and CED will be equal, inter-
cepting equal arcs around center E. However, the observed angle CFD, being
an exterior angle, is greater than the interior angle CED. Therefore, angle CFD
is also greater than angle AEB, which is equal to angle CED. But angle AEB,
as an exterior angle, is likewise greater than the interior angle AFB. So much
the more is angle CFD greater than angle AFB. But both were produced in
equal times, since AB and CD are equal arcs. Therefore, the uniform motion
around E will appear nonuniform around F.

The same result may be seen more simply, because arc AB lies farther from
F than does arc CD. For, according to Euclid’s Elements, 111, 7, with reference
to the lines intercepting these arcs, AF and BF are longer than CF and DF. In
optics it is proved that equal magnitudes appear larger when nearer than when
farther away. Therefore, the proposition concerning the eccentric is established.

The same result will be accomplished also by an epicycle on a concentric.
Let E, the center of the universe, where the sun is situated, also be the center of
the concentric ABCD. In the same plane let A be the center of the epicycle
FG. Through both centers draw the straight line CEAF, with the epicycle’s
apogee at F and perigee at I. Clearly, then, uniform

motion occurs in A, but the apparent nonuniformity in the epicycle FG. For,
suppose that A moves in the direction of B, that is, in consequence, whereas the

center of the earth moves from the apogee F in precedence. The motion of E

will appear faster at the perigee, which is I,
because the motions of both A and I are in
the same direction. On the other hand, at the
apogee, which is F, E will seem to be slower,
because it is moved only by the overbalanc-
ing motion of two contrary [motions]. When
the earth is situated at G, it will surpass the

uniform motion, behind which it will lag

when it 1s situated at K. In either case the

difference will be the arc AG or AK, by which
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therefore the sun likewise will seem to move nonuniformly.

Whatever is done by an epicycle, however, can be accomplished in the same

way by an eccentric. This is described equal to the
concentric and in the same plane by the planet as it
travels on the epicycle, the distance from the eccen-
tric’s center to the concentric’s center being the length
of the epicycle’s radius. This happens, moreover, in

three ways.

Suppose that the epicycle on the concentric and

the planet on the epicycle execute revolutions that
are equal but opposite in direction. Then the planet’s motion will trace a fixed
eccentric, whose apogee and perigee have unchangeable positions. Thus, let
ABC be a concentric; D, the center of the universe; and ADC, a diameter.
Assume that when the epicycle is in A, the planet is in the epicycle’s apogee.
Let this be G, and let the epicycle’s radius fall on the straight line DAG. Take
AB as an arc of the concentric. With B as center, and with radius equal to AG,
describe the epicycle EF. Draw DB and EB as a straight line. Take the arc EF
similar to AB and in the opposite direction. Place the planet or the earth at F,
and join BE. On AD take the line segment DK equal to BF. Then the angles at
EBF and BDA are equal, and therefore BF and DK are parallel and equal. But
if straight lines are joined to equal and parallel straight lines, they also are par-

allel and equal, according to Euclid, I, 33. Since DK and AG

are taken to be equal, and AK is their common annex, GAK will be equal to
AKD, and therefore equal also to KF. Hence, the circle described with K as
center, and radius KAG, will pass through F. By the composite motion of AB

and EF, F describes an eccentric equal to the con-
centric, and therefore also fixed. For while the epi-
cycle executes revolutions equally with the con-
centric, the apsides of the eccentric so described
must remain in the same place.

But if the revolutions executed by the epicy-
cle’s center and circumference are unequal, the

planet’s motion will no longer trace a fixed eccen-

tric. Instead, the eccentric’s center and apsides move
in precedence or in consequence according as the planet’s motion is swifter or

slower than the center of its epicycle. Thus, suppose that angle EBF is bigger

180 Nicolaus Copernicus. De Revolutionibus Orbium Ceelestium, Libri VI. Nuremberg, 1543. THE WARNOCK LIBRARY

page 86r



than angle BDA, but angle BDM is constructed
equal to angle EBF. It will likewise be shown that,
if DL on line DM is taken equal to BE the circle
described with L as center and radius LMN, equal
to AD, will pass through the planet at F. Hence, the

planet’s composite motion obviously describes NF

as the arc of an eccentric circle, whose apogee has

meanwhile moved in precedence from point G
through the arc GN. On the other hand, if the planet’s motion on the epicycle
is slower [than the motion of the epicycle’s center], then the eccentric’s center
will move in consequence as far as the epicycle’s center moves. For example, if
angle EBF is smaller than angle BDA but equal to angle BDM, what I have
said obviously happens.

From all these analyses it is clear that the same apparent nonuniformity
always occurs either through an epicycle on a concentric or through an eccen-
tric equal to the concentric. There is no difference between them provided that
the distance between their centers is equal to the epicycle’s radius.

Hence it is not easy to decide which of them exists in the heavens. For his
part Ptolemy believed that the model of the eccentric was adequate where he
understood there was a simple inequality, and the positions of the apsides were
fixed and unchangeable, as in the case of the sun, according to his thinking
[Syntaxis, 111, 4]. But for the moon and the other five planets, which travel with

a twofold or manifold nonuniformity,

he adopted eccentrepicycles. By means of these models, furthermore, it is easily
shown that the greatest difference between the uniform and apparent motions
is seen when the planet appears midway between the higher and lower apsides
according to the eccentric model, but according to the epicyclic model when

the planet touches the deferent, as Ptolemy makes clear [Synzaxis, I11, 3].

The proof proceeds as follows in the case of
the eccentric. Let it be ABCD, with E as center,
and AEC as the diameter passing through the sun
at F outside the center. Through F draw BFD per-
pendicular [to diameter AEC]; join BE and ED.
Let A be the apogee; C, the perigee; B and D, the

apparent midpoints between them. The exterior S

angle AEB, it is clear, comprises the uniform mo-
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tion, while the interior angle EFB comprises the apparent motion. The differ-
ence between them is the angle EBF. I say that no angle greater than angle B or
angle D can be drawn from the circumference to the line EF. For, take points G
and H before and after B. Join GD, GE, GF, and HE, HF, HD. Then FG,
which is nearer to the center, is longer than DF. Therefore, angle GDF will be
bigger than angle DGF. But the angles EDG and EGD are equal (since the
sides EG and ED falling on the base are equal). Therefore angle EDF, which is
equal to angle EBE; is greater than angle EGF. In like manner DF also is longer
than FH, and angle FHD is greater than angle FDH. But the whole angle
EHD is equal to the whole angle EDH, since EH is equal to ED. Therefore
the remainder, angle EDF, which is equal to angle EBE, is also greater than the
remainder EHF. Hence nowhere will a greater angle be drawn to the line EF
than from points B and D. Consequently, the greatest difference between the
uniform motion and the apparent motion occurs at the apparent midpoint be-

tween the apogee and the perigee.

The sun’s apparent nonuniformity. Chapter 16.

The foregoing are general proofs applicable not only to the solar phenomena
but also to the nonuniformity of other bodies. For the present I shall take up
the phenomena of the sun and the earth. Within that topic I shall first discuss
what we have received from Ptolemy and other ancient authors, and then what
we have learned from the more recent period and experience.

Ptolemy found

that there were 94% days from the vernal equinox to the [summer] solstice, and
92%2 days from the [summer] solstice to the autumnal equinox [ Synzaxis, 11, 4].
On the basis of the [elapsed] time, the mean and uniform motion was 93° 9" in
the first interval; and in the second interval, 91°11". With these figures divide up

the circle of the year. Let it be ABCD, with its center at E, AB = 93° 9" for the

first interval of time, and BC = 91° 11" for the sec-
ond. Let the vernal equinox be observed from A;
the summer solstice, from B; the autumnal equi-
nox, from C; and the remaining cardinal point,
the winter solstice, from D. Join AC and BD,
which intersect each other at right angles in F

where we place the sun. Then the arc ABC is

greater than a semicircle; also, AB is greater than

182 Nicolaus Copernicus. De Revolutionibus Orbium Ceelestium, Libri VI. Nuremberg, 1543. THE WARNOCK LIBRARY

page 87r



BC. Hence Ptolemy inferred [Synzaxis, 111, 4] that E, the center of the circle,
lies between lines BF and FA; and the apogee, between the vernal equinox and
the solar summer solstice. Now through the center E [and parallel] to AFC,
draw IEG, which will intersect BFD in L. [Parallel] to BFD, draw HEK, which
will cross AF at M. In this way there will be constructed the rectangular paral-
lelogram LEMF-. Its diagonal FE, when extended in the straight line FEN, will
mark the earth’s greatest distance from the sun, and the position of the apogee,
in N. Then, since arc ABC is 184° 20", AH, which is half of it, is 92° 10". If this
is subtracted from AGB,; it leaves a remainder HB of 59’. Furthermore, when
the degrees of HG, a quadrant of the circle, are subtracted from AH, the re-
mainder AG has 2°10°". But half of the chord subtending twice the arc AG has
378 units, of which the radius has 10,000, and is equal to LF. Half of the chord
subtending twice the arc BH is LE, which has 172 of the same units. Therefore,
two sides of the triangle ELF being given, the hypotenuse EF will have 414 of
the same units of which the radius has 10,000, or approximately %4 of the
radius NE. But EF:EL is the ratio of the radius NE to half of the chord sub-
tending twice the arc NH. Therefore NH is given as 24%° and so is angle
NEH, to which LFE, the angle of the apparent [motion], is equal. Conse-
quently, this was the distance by which the higher apse preceded the summer
solstice before Ptolemy.

On the other hand, IK is a quadrant of a circle.

From it, subtract IC and DK, equal to AG and HB. The remainder CD has 86°
51". When this is subtracted from CDA, the remainder DA has 88° 49". But 88%
days correspond to 86°51; and to 88° 49’, 9o days, plus % day = 3 hours. In these
periods, in terms of the earth’s uniform motion, the sun seemed to pass from
the autumnal equinox to the winter solstice, and to return from the winter
solstice to the vernal equinox in what is left of the year.

Ptolemy states [Syntaxis, 111, 4] that he too found these values no different
from what Hipparchus had reported before him. Accordingly, he thought that
for the rest of time the higher apse would remain 24%° before the summer sol-
stice, and that the eccentricity I mentioned, %24 of the radius, would abide forever.
Both values are now found to have changed with a perceptible difference.

Al-Battani recorded 93¢ 35 from the vernal equinox to the summer sol-
stice, and to the autumnal equinox, 1869 37%™. From these figures he deduced by
Ptolemy’s method an eccentricity no greater than 346 units, of which the radius

is 10,000. Al-Zarkali the Spaniard agrees with Al-Battani in regard to the ec-
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centricity, but reported the apogee 12° 10" before the solstice, whereas to Al-
Battani it seemed to be 7° 43" before the same solstice. From these results the
inference was drawn that another nonuniformity in the motion of the earth’s
center still remains, as is confirmed also by the observations of our age.

For during the ten or more years since I have devoted my attention to in-
vestigating these topics, and in particular in 1515 A.D., I have found that 186¢
529 are completed between the vernal and autumnal equinoxes. To avoid an
error in determining the solstices, which my predecessors are suspected by some
scholars of having occasionally committed, in my research I added certain other
solar positions which, in addition to the equinoxes, were not at all difficult to
observe, such as the middle of the signs of the Bull, Virgin, Lion, Scorpion, and
Water Bearer. Thus from the autumnal equinox to the middle of the Scorpion
I found 45° 16%™, and 178¢ 53%2™ to the vernal equinox.

Now in the first interval the uniform motion is 44° 37, and 176° 19" in the

second interval.

With this information as a basis, reproduce the circle ABCD. Let A be the point
from which the sun appeared at the vernal equinox; B, the point from which the
autumnal equinox was observed; and C, the middle of the Scorpion. Join AB and

CD, which intersect each other in F, the center of

the sun. Draw AC. Then arc CB is known, since it //"j iL _H“'-.\
is 44°37". Therefore angle BAC is given in terms of | ; v
360° = 2 right angles. BFC, the angle of the appar- o e = |:
ent motion, is 45° in terms of 360° = 4 right angles; e
but on the basis of 360° = 2 right angles, angle BFC c 7\‘:__F | /’f

= 90° Hence the remainder, angle ACD, which T

intercepts the arc AD, is 45°23". But the entire por-

tion ACB =176°19". When BC is subtracted, the remainder AC = 131° 42". When
this figure is added to AD, the sum, arc CAD, = 177° 5%". Therefore, since each
segment ACB and CAD is less than a semicircle, the center is clearly contained
in BD, the rest of the circle. Let the center be E, and through F draw the diam-
eter LEFG. Let L be the apogee, and G the perigee. Drop EK perpendicular to
CFD. Now the chords subtending the given arcs are derived from the Table: AC
= 182,494, and CFD = 199,934 units, of which the diameter = 200,000. Then the
angles of triangle ACF are given. According to Theorem I on Plane Triangles [I,
13], the ratio of the sides will also be given: CF = 97,967 of the units of which AC
= 182,494. Therefore FD exceeds half [of CFD], the excess being FK = 2,000 of
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the same units. The segment CAD is less than a semicircle by 2° 54". Half of the
chord subtending this arc is equal to EK and has 2,534 units. Therefore, in trian-
gle EFK the two sides FK and KE which form the right angle are given. Of the
given sides and angles, EF will have 323 units, of which EL has 10,000; and angle
EFK has 51%5°, when 360° = 4 right angles. Therefore, the whole angle AFL has
96%5° and the remainder, angle BFL has 83%°. If EL has 60 units, EF will be
approximately one unit, 56 minutes of a unit. This was the sun’s distance from the

center of the circle, having now become barely %51,

whereas to Ptolemy it seemed to be Y24. Furthermore, the apogee, which then

preceded the summer solstice by 24%2° now follows it by 6%°.

Explanation of the first and annual solar inequality, together with its par-
ticular variations. Chapter 17.

Hence, since several variations are found in the solar inequality, I think that I
should first set forth the annual variation, which is better known than the oth-
ers. For this purpose, reproduce the circle ABC, with its center E, diameter

AEC, apogee A, perigee C, and the sun at D. Now the greatest difference

between the uniform [motion] and the apparent i
[motion] has been shown [III, 15] to occur at the |
apparent midpoint between the two apsides. For | \
this reason, on AEC construct the perpendicular [ Q8 | ¢

BD, intersecting the circumference in point B. Join '

BE. In the right triangle BDE two sides are given,
namely, BE, the radius of the circle, and DE, the

distance from the sun to the center. Therefore the
angles of the triangle will be given, among them angle DBE, the difference
between BEA, the angle of the uniform [motion], and the right angle EDB,
[which is the angle of the] apparent [motion].

However, to the extent that DE has increased and decreased, the whole

shape of the triangle has changed. Thus, the angle B A
was 2° 23” before Ptolemy; 1° 59" at the time of Al- B

Battani and Al-Zarkali; and at present it is 1° 51".

According to Ptolemy [Synzaxis, I11, 4], the arc AB, \ a
intercepted by the angle AEB, was 92° 23", and BC %
87° 373 AB was 91° 59', and BC 88° 1, according to \\-\K
Al-Battani; at present, AB is 91° 51, BC 88°9". o
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From these facts the remaining variations are clear. For, as in the second
diagram, take any other arc AB, such that angle AEB, the supplementary angle
BED, and the two sides BE and ED are given. By the Theorems on Plane
Triangles, angle EBD

of the prosthaphaeresis and the difference between the uniform and apparent
[motions] will be given. These differences also must change on account of the

variation in the side ED, which was just mentioned.

Analysis of the uniform motion in longitude. Chapter 18.

The foregoing explanation of the annual solar inequality was based, not on the
simple variation (as was made clear), but on a variation disclosed through the
long passage of time to be intermingled with the simple variation. Later on
[III, 20] I shall separate these variations from each other. Meanwhile, the mean
and uniform motion of the earth’s center will be established with greater nu-
merical accuracy, the better it is distinguished from the nonuniform variations,
and the longer the period of time over which it extends. Now this investigation
will proceed as follows.

I took the autumnal equinox observed by Hipparchus at Alexandria in the
32nd year of the 3rd Callippic period, which was the r77th year after the death of
Alexander, as was mentioned above [I1I, 13], on the third of the five intercalary
days at midnight, followed by the fourth day. But since Alexandria lies about one
hour east of Cracow in longitude, the time [at Cracow] was about an hour before
midnight. Therefore, according to the computation reported above, the position
of the autumnal equinox in the sphere of the fixed stars was 176° 10" from the
beginning of the Ram, and this was the apparent place of the sun, its distance
from the higher apse being 114%°. To depict this situation, about center D draw
ABC, the circle described by the center of the earth.
Let ADC be the diameter, in which the sun is placed

at E, with the apogee at A and the perigee at C. Let B
be the point where the sun appeared to be at the au-
tumnal equinox. Draw the straight lines BD and BE.
Then angle DEB, the sun’s apparent distance from the

apogee, is 144%°. At that time DE was 416 units, of

which BD = 10,000. Therefore, according to Theorem
IV [II, E] on Plane Triangles, in triangle BDE the angles are given. Angle DBE,
the difference between angle BED and angle BDA, is 2°10".
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But since angle BED = 114° 30, angle BDA will be 116° 40". Therefore, the
mean or uniform place of the sun is 178° 20" from the beginning of the Ram in
the sphere of the fixed stars.

With this observation I compared the autumnal equinox which I observed
in Frombork on the same Cracow meridian in the year 1515 A.D. on 14 Septem-
ber, in the 1,840th Egyptian year after the death of Alexander on the 6th day of
Phaophi, the second Egyptian month, half an hour after sunrise [III, 13]. At
that time the place of the autumnal equinox, according to computation and
observation, was 152° 45" in the sphere of the fixed stars, at a distance of 83° 20’
from the higher apse, according to the foregoing analysis [I11, 16, end]. Con-
struct the angle BEA = 83° 20/, with 180° = 2 right angles. In triangle [BDE],
two sides are given: BD = 10,000 units, and DE = 323 units. According to
Theorem IV [II, E] on Plane Triangles, angle DBE will be about 1° 50" If a

circle circumscribes triangle BDE, angle BED will intercept an arc of 166° 40/,

when 360° = 2 right angles. Side BD will be 19,864

units, of which the diameter = 20,000. In accord-

ance with the given ratio of BD to DE, about 640 of

the same units will be established as the length of |g . ——s—?

DE, which subtends angle DBE = 3° 40" at the cir- I'\, B ‘I. X
cumference, but 1° 50" as a central angle. This was \‘-\\M ] /
the prosthaphaeresis and the difference between the BC

uniform and apparent [motions]. By adding it to

angle BED = 83° 20, we shall have angle BDA and arc AB = 85° 10" as the
distance of the uniform [motion] from the apogee. Hence the mean place of
the sun in the sphere of the fixed stars is 154° 35". Between the two observations
there are 1,662 Egyptian years, 37 days, 18 minutes of a day, 45 seconds of a day.
In addition to the complete revolutions, 1,660 in number, the mean and uni-
form motion was about 336° 15°, in agreement with the number which I set

down in the Table of Uniform Motion [following III, 14].

Establishing the positions and epochs for the sun’s uniform
motion. Chapter 19.

From the death of Alexander the Great to Hipparchus’ observation the elapsed
time 1s 176 years, 362 days, 27%2 minutes of a day, in which the mean motion is
computed as 312° 43". This figure is subtracted from the 178° 20" for Hipparchus’
observation [III, 18], supplemented by the 360° of a circle. The remainder, 225°

37', will be the position for the meridian of Cracow and Frombork, the place of
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my observation, at noon on the first day of Thoth, the first Egyptian month,
for the epoch of the era commencing with the death of Alexander the Great.
From that time to the epoch of the Roman era of Julius Caesar, in 278 years,
118% days, the mean motion, after [the elimination of ] complete revolutions, is
46° 27". When this figure is added to the number for Alexander’s position, the
sum is 272° 4" for Caesar’s position at midnight preceding 1 January, the cus-
tomary start of the Roman years and days. Then in 45 years, 12 days, or in 323
years, 130%2 days after Alexander the Great, comes Christ’s position at 272°31".
Christ was born in the 3rd year of the 194th Olympiad. This amounts to 775
years, 12% days, from the beginning of the first Olympiad to midnight preced-
ing 1 January [in the year of Christ’s birth]. This likewise puts the position of
the first Olympiad at 96° 16" at noon on the first day of the month
Hecatombaeon, the present equivalent of this day being 1 July in the Roman
calendar. In this way the epochs of the simple solar motion are related to the
sphere of the fixed stars. Furthermore, the positions of the composite [motion]
are obtained by applying the precession [of the equinoxes]. Corresponding to
the simple positions, the composite positions are, for the Olympiads, 90° 59
Alexander, 226° 38'; Caesar, 276° 59°; and Christ, 278° 2". All these positions are

reduced (as I mentioned) to the meridian of Cracow.

The second and twofold inequality imposed on the sun by the shift of the
apsides. Chapter 20.
The shift in the solar apse now presents a problem which is more acute be-
cause, whereas Ptolemy regarded the apse as fixed, others thought that it ac-
companied the motion of the sphere of the stars, in conformity with their doc-
trine that the fixed stars move too. Al-Zarkali believed in the nonuniformity of
this [motion], which even happened to regress. He relied on the following
evidence. Al-Battani had found the apogee, as was mentioned above [1II, 16],
7° 43" ahead of the solstice: in the 740 years since Ptolemy it had advanced
nearly 17° In the 193 years thereafter it seemed to Al-Zarkali to have retro-
gressed about 4%2°. He therefore believed that the center of the annual orbit
had an additional motion on a circlet. As a result, the apogee was deflected
back and forth, while the distance from the center of the orbit to the center of
the universe varied.

[Al-Zarkali’s] idea was quite ingenious, but it has not been accepted be-
cause it is inconsistent with the other findings taken as a whole. Thus, consider

the successive stages of that motion. For some time before Ptolemy it stood
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still. In 740 years or thereabouts it progressed through 17°. Then in 200 years it
retrogressed 4° or 5°. Thereafter until our age it moved forward. The entire
period has witnessed no other retrogression nor the several stationary points
which must intervene at both limits when motions reverse their direction. [ The
absence of ] these [retrogressions and stationary points] cannot possibly be
understood in a regular and circular motion. Therefore many believe that some
error occurred in the observations of those [astronomers, that is, Al-Battani
and Al-Zarkali]. Both [were] equally skillful and careful practitioners so that it
is doubtful which one we should prefer to follow.

For my part I confess that nowhere is there a greater difficulty than in
understanding the solar apogee, where we infer large [quantities] from certain
minute and barely perceptible [magnitudes]. For near the perigee and apogee
an entire degree produces a change of only 2’, more or less, in the
prosthaphaeresis. On the other hand, near the intermediate distances 5° or 6°

are traversed for 1. Hence a slight error can develop into a very large one.

Accordingly, even in putting the apogee at 625° within the Crab [III, 16], I was
not satisfied to trust the time-measuring instruments, unless my results were also
confirmed by solar and lunar eclipses. For any error lurking in the instruments is
undoubtedly disclosed by the eclipses. It is highly probable, therefore, as we can
deduce from the general structure of the motion, that it is direct, yet nonuniform.
For after that stationary [interval] from Hipparchus to Ptolemy the apogee ap-
peared in a continuous, regular, and progressive advance until the present tune.
An exception occurred between Al-Battani and Al-Zarkali through a mistake (it

is believed), since everything else seems to fit. For in a similar way the solar

prosthaphaeresis has likewise not yet stopped di-
minishing. Hence it seems to follow the same cir-
cular pattern, and both nonuniformities are in phase
with that first and simple anomaly of the obliquity
of the ecliptic, or with a similar irregularity.

To make this situation clearer, in the plane of

the ecliptic draw the circle AB, with its center at

C, and its diameter ACB, on which put the solar

globe at D as the center of the universe. With C as center, describe EF as
another circle of small dimensions which does not contain the sun. On this
circlet let the center of the annual revolution of the earth’s center be under-

stood to move in a certain very slow advance. Together with the line AD, the
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circlet EF advances in consequence, whereas the center of the annual revolu-
tion moves along the circlet EF in precedence, both motions being quite slow.
Therefore the center of the annual orbit will at one time be found at its greatest
distance [from the sun], DE, and at another time at its least, DF. Its motion
will be slower at E, and faster at F. In the circlet’s intervening arcs [the center of
the annual orbit] makes that distance between the centers increase and de-
crease with time, and [it makes] the higher apse alternately precede and follow
that apse or apogee which lies on line ACD and serves as the mean apogee.
Thus, take the arc EG. With G as center, draw a circle equal to AB. Then the
higher apse will lie on line DGK, and the distance DG will be shorter than
DE, in accordance with Euclid, ITI, 8. These relations are demonstrated in this

way by an eccentreccentric,

and also by an epicyclepicyclet, as follows.

Let AB be concentric with the universe and with the sun. Let ACB be the
diameter on which the higher apse lies. With A as center, describe the epicycle
DE. Again, with D as center, draw the epicyclet FG, on which the earth re-
volves. Let all lie in the same plane, that of the ecliptic. Let the first epicycle

move 1n conse-

quence in about a
year. Let the second
epicycle, that is, D,
likewise move in a
year, but in prec-
edence. Let the
revolutions of both
epicycles be equal
with respect to line
AC. Furthermore,
let the center of the
earth [by moving]
away from F in
precedence add a

little to D. Hence,

when the earth is at
E clearly it will make the solar apogee a maximum, and a minimum when it is

at G. In the intervening arcs of the epicyclet FG, moreover, it will make the
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apogee precede or follow, accelerate or decelerate, increase or decrease. Thus
the motion appears nonuniform, as was previously demonstrated by the
epicycleccentric.

Now take the arc AI. With I as center, reconstruct the epicyclepicycle. Join
CI, and prolong it along the straight line CIK. Angle KID will be equal to ACI
on account of the equality of the revolutions. Therefore, as I showed above [I1I,
15], point D will describe around L as center and with eccentricity CL = DI an
eccentric equal to the concentric AB. F will also trace its own eccentric, with
eccentricity CLM = IDF; and G likewise, with eccentricity IG = CN. Suppose

that meanwhile the center of the earth has already traversed

any arc FO on its own epicycle, the second one. O will now describe an eccen-
tric whose center lies not on line AC, but on a line, such as LP, parallel to DO.
Furthermore, if OI and CP are joined, they will be equal, but smaller than IF
and CM,; and angle DIO equal to angle LCP, in accordance with Euclid, I, 8.
To that extent the solar apogee on line CP will be seen to precede A.

Hence it is also clear that the same thing happens with an eccentrepicycle.
For from the previous [arrangement take] only that eccentric which is described
by the epicyclet D around L as center. Let the center of the earth revolve along
the arc FO under the aforementioned conditions, that is, a little beyond an
annual revolution. Around P as center, it will trace a second circle, eccentric
with respect to the first eccentric, and thereafter the same phenomena will
recur. Since so many arrangements lead to the same result, I would not readily
say which one is real, except that the perpetual agreement of the computations

and phenomena compels the belief that it is one of them.

How large is the second variation in the solar inequality? Chapter 21.
We have already seen [III, 20] that the second inequality follows the first and
simple anomaly of the obliquity of the ecliptic, or something like it. Hence,
unless impeded by some error of previous observers, we shall obtain its varia-
tions with precision. For by computation we have the simple anomaly as about
165°39"in 1515 A.D., and its beginning, by calculating backward, in about 64 B.c.
From that time until ours the total is 1,580 years. When the anomaly began
then, the eccentricity, I found, was at its maximum = 417 units, of which the
radius = 10,000. Our eccentricity, on the other hand, was shown to be 323.
Now let AB be a straight line, on which B is the sun and the center of the
universe. Let the greatest eccentricity be AB; and the smallest, DB. With di-
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ameter AD, describe a circlet. On it take arc AC as the measure of the first,

simple anomaly,

which was 165° 39". AB is given as 417 units, found at the beginning of the
simple anomaly, that is, at A. On the other hand, at present BC is 323 units.
Hence we shall have triangle ABC, with sides AB and BC given. One angle,
CAD, also [is given], because arc CD = 14° 21’, being the remainder [when arc

AC is subtracted] from the semicircle. Therefore, in

accordance with the Theorems on Plane Triangles
the remaining side AC will be given, and also angle
ABC, which is the difference between the apogee’s
mean and nonuniform motions. Since AC subtends
a given arc, diameter AD of circle ACD will also be
given. For, from angle CAD = 14° 21, we shall have
CB = 2,486 units, of which the diameter of the circle
circumscribing the triangle is 100,000. The ratio

BC:AB gives AB = 3,225 of the same units. AB inter-

cepts the angle ACB = 341° 26". The remainder, with .
360° = 2 right angles, is the angle CBD = 4°13’, which
is intercepted by AC = 735 units. Therefore, in units
of which AB = 417, AC has been found to be about |
95 units. Since AC subtends a given arc, it will have a '

ratio to AD as the diameter. Therefore AD is given ;.'

as 96 units, of which ADB = 417. DB, the remainder

= 321 units, the minimum extent of the eccentricity.

Angle CBD, which was found to be 4° 13" at the circumference, but 2° 6% at
the center, is the prosthaphaeresis to be subtracted from the uniform motion
of AB around B as center.

Now draw straight line BE tangent to the circle at point E. Take F as center,
and join EF. In right triangle BEF side EF is given as 48 units, and BDF as 369
units. In units of which FDB as radius = 10,000, EF = 1,300. This is half of the
chord subtending twice the angle EBF and, with 360° = 4 right angles, is 7° 28/,
the greatest prosthaphaeresis between the uniform motion F and the apparent
motion E.

Hence all the other individual differences can be obtained. Thus, assume that
angle AFE = 6° We shall have a triangle with sides EF and FB given, as well as
angle EFB. From this information the prosthaphaeresis EBF will emerge as 41".
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But if angle AFE = 12°, we shall have the prosthaphaeresis = 1° 23"; if 18°, then 2°
3';and so on for the rest by this method, as was stated above in connection with

the annual prosthaphaereses [1I1, 171].

How the solar apogee’s uniform and nonuniform motions are

derived. Chapter 22.

The time when the greatest eccentricity coincided with the beginning of the
first and simple anomaly was the 3rd year of the 178th Olympiad and the 259th
year after Alexander the Great, according to the Egyptians. Hence the apogee’s
true and mean positions were both at 5%2° within the Twins, that is, 65%° from
the vernal equinox. The true equinoctial precession, which also coincided with
the mean [precession] at that time, was 4°38". When this figure is subtracted
from 65%2°, the remainder, 60° 52" from the beginning of the Ram in the fixed
stars, was the place of the apogee. Furthermore, the apogee’s place was found to
be 6%3° within the Crab in the 2nd year of the 573rd Olympiad or 1515 A.D. The
precession of the vernal equinox by computation was 27%°. If this figure is
subtracted from 9674° the remainder is 69° 25". The first anomaly at that time
was 165°39". The prosthaphaeresis, by which the true place preceded the mean
[place], was shown to have been 2°% [III, 21]. Therefore the mean place of the
solar apogee was known to be 71° 32". Hence in 1,580 uniform Egyptian years
the apogee’s mean and uniform motion was 10° 41. When this figure is divided

by the number of years, we shall have the annual rate as 24" 20" 14"

Determining the solar anomaly and establishing its positions. Chapter 23.

If the foregoing figures are subtracted from the simple annual motion, which was
359°44 49" 7" 4" [111, 14], the remainder, 359° 44" 24" 46" 50", will be the annual
uniform motion of the anomaly. Furthermore, when this is divided by 365, the daily
rate will emerge as 59" 8”7 2", in agreement with what was set out in the Tables
above [following III, 14]. Hence we shall also have the positions of the recognized
epochs, beginning with the first Olympiad. For, the mean solar apogee half an hour
after sunrise on 14 September in the 2nd year of the 573rd Olympiad was shown to
be at 71°37’, from which the mean solar distance was 83°3". From the first Olympiad
there are 2,290 Egyptian years, 281 days, 46 day-minutes. In this time the motion in
anomaly, after the elimination of whole circles, was 42° 49". When this figure is
subtracted from 83°3’, the remainder is 40°14” as the position of the anomaly at the
first Olympiad. In the same way as before, the place for the epoch of Alexander is

166° 38’; for Caesar, 211° 11; and for Christ, 211°19".
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Tabular presentation of the variations in the uniform and apparent [solar
motions]. Chapter 24.

In order to enhance the usefulness of what has been proved concerning the
variations in the sun’s uniform and apparent [motions], I shall also set them out
in a Table having sixty lines and six columns or rows. The first two columns will
contain the number [of degrees of the annual anomaly] in both semicircles, I
mean, the ascending [from o°to 180°] and descending [from 360° to 180°] semi-
circles, arranged at intervals of 3° as I did above for the [prosthaphaereses of
the] motions of the equinoxes [following III, 8]. The third column will record

the degrees [and minutes] of the variation in the motion of the solar apogee

or in the anomaly; as correlated with every third degree, this variation rises to a
maximum of about 7%° The fourth column will be reserved for the propor-
tional minutes, which are 6o at the maximum. They enter the reckoning in
conjunction with [the sixth column’s] increase in the annual anomaly’s
prosthaphaereses, when these are greater [than the prosthaphaereses arising
from the minimum distance between the sun and the center of the universe].
Since the largest increase for these [prosthaphaereses] is 32°, a sixtieth part will
be 32”. Then, in accordance with the size of the increases, which I shall derive
from the eccentricity by the method explained above [I1I, 21], I shall put down
the number of the sixtieths alongside every third degree. The fifth column will
carry the annual and first variation’s individual prosthaphaereses, based on the
sun’s least distance from the center [of the universe]. The sixth and last column
will show the increases in those prosthaphaereses which occur at the greatest

eccentricity. The Table follows.
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Table of the Solar Prosthaphaereses page 94v

Common Central Orbital i ik

Numbers Prosthaphaereses ) Prosthaphaereses | Increases ! il

Proportional b e il

Degree Degree Degree Minute Minutes Degree Minute Minute M | Y

3 357 o 21 60 o 6 I
6 354 o 41 60 o I 3
9 351 I 2 60 o 17 4
12 348 I 23 60 o 22 6
15 345 I 44 60 o 27 7
18 342 2 5 59 o 33 9
21 339 2 25 59 o 38 I
24 336 2 46 59 o 43 13
27 333 3 5 58 o 48 4
30 330 3 24 57 o 53 16
33 327 3 43 57 o 58 17
36 324 4 2 56 I 3 18
39 321 4 20 55 I 7 20
42 318 4 37 54 I 12 2I
45 315 4 53 53 I 16 22
48 312 5 8 51 I 20 23
5T 309 5 23 50 I 24 24
54 306 5 36 49 I 28 25
57 303 5 50 47 I 3t 27
60 300 6 3 46 I 34 28
63 297 6 15 44 I 37 29
66 294 6 27 42 I 39 29
69 291 6 37 41 I 42 30
72 288 6 46 40 I 44 30
75 285 6 53 39 I 46 30
78 282 7 38 I 48 31
81 279 7 36 1 49 3
84 276 7 14 35 I 49 31
87 273 7 20 33 1 50 3
90 270 7 25 32 I 50 32
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Table of the Solar Prosthaphaereses
Common Central Orbital
Numbers Prosthaphaereses ) Prosthaphaereses Increases
Proportional
Degree Degree Degree Minute Minutes Degree Minute Minute

93 267 7 28 30 I 50 32
96 264 7 28 29 I 50 33
99 261 7 28 27 I 50 32
102 258 7 27 26 I 49 32
105 255 7 25 24 I 48 31
108 252 7 22 23 I 47 31
11 249 7 17 21 I 45 31
114 246 7 10 20 I 43 30
117 243 7 2 18 1 40 30
120 240 6 52 16 I 38 29
123 237 6 42 15 I 35 28
126 234 6 32 14 I 32 27
129 231 6 17 I2 I 29 25
132 228 6 5 11 I 25 24
135 22§ 5 45 10 I 21 23
138 222 5 30 9 I 17 22
141 219 5 13 7 I 12 21
144 216 4 54 6 I 7 20
147 213 4 32 5 I 3 18
150 210 4 12 4 o 58 17
153 207 3 48 3 o 53 14
156 204 3 25 3 o 47 13
159 201 3 2 2 o 42 I2
162 198 2 39 I o 36 10
165 195 2 13 I o 30 9

168 192 I 48 I o 24 7

171 189 I 2I o o 18 5

174 186 o 53 o o 12 4
177 183 o 27 o o 6 2

180 180 o o o o o

Computing the apparent sun. Chapter 25.

It is now quite clear, I believe, how the apparent position of the sun is com-
puted from the foregoing [Table] for any given time. For that time, look for the
true place of the vernal equinox or its precession together with the first, simple
anomaly, as I explained above [III, 12]. Then through the Tables of the Uni-
torm Motion [following III, 14, find] the mean simple motion of the center of
the earth (or the motion of the sun, as you may wish to call it) and the annual
anomaly. Add these [figures] to their established epochs [as given in III, 23].
Then, alongside the first, simple anomaly and its number, or an adjacent number,
as recorded in the first or second column of the preceding Table, in the third

column you will find the corresponding prosthaphaeresis of the annual anomaly.
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Set the accompanying proportional minutes aside. If the raw [annual anomaly]
is less than a semicircle or its number occurs in the first column, add the
prosthaphaeresis to the annual anomaly; otherwise, subtract [the prostha-
phaeresis from the raw annual anomaly]. The remainder or sum will be the
adjusted solar anomaly. Then with it obtain the prosthaphaeresis of the annual
orbit, which occupies the fifth column, together with the accompanying in-
crease. This increase, taken in conjunction with the proportional minutes, pre-
viously set aside, amounts to a quantity which is always added to this
prosthaphaeresis. This [sum] will become the adjusted prosthaphaeresis, which
is subtracted from the sun’s mean place if the number of the annual anomaly
was found in the first column or was less than a semicircle. On the other hand,
[the adjusted prosthaphaeresis] is added [to the sun’s mean place] if [the an-
nual anomaly was] greater [than a semicircle] or occupied [a line in] the second
column of numbers. The remainder or sum thus obtained will define the sun’s
true place, as measured from the beginning of the constellation of the Ram.
Finally, the true precession of the vernal equinox, if added [to the sun’s true
place], will immediately also show the sun’s position in relation to the equinox,
in zodiacal signs and degrees of the zodiac.

If you wish to accomplish this result in another way, take the uniform com-
posite [motion] instead of the simple motion. Perform all the aforementioned
operations, except that you add or subtract, as the situation requires, only the
prosthaphaeresis of the equinoctial precession instead of the precession itself.
In this way the computation of the apparent sun is obtained through the mo-
tion of the earth in agreement with ancient and modern records, so that in

addition

the future motion has presumably already been foreseen.

Nevertheless I am also not unaware that if anybody believed the center of
the annual revolution to be stationary as the center of the universe, while the
sun moved with two motions similar and equal to those which I explained in
connection with the center of the eccentric [I1I, 20], all the phenomena would
appear as before—the same figures and the same proof. Nothing would be
changed in them, especially the phenomena pertaining to the sun, except the
position. For then the motion of the earth’s center around the center of the
universe would be regular and simple (the two remaining motions being as-
cribed to the sun). For this reason there will still remain a doubt about which of

these two positions is occupied by the center of the universe, as I said ambigu-
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ously at the beginning that the center of the universe is in the sun [I, 9, 10] or
near it [I, 10]. I shall discuss this question further, however, in my treatment of
the five planets [V, 4]. There I shall also decide it to the best of my ability, with
the thought that it is enough if I adopt reliable and nowise untrustworthy com-

putations for the apparent sun.

The nuchthemeron, that is, the variable natural day. Chapter 26.

With regard to the sun, something still remains to be said about the variation
in the natural day, the time which is embraced in the period of 24 equal hours
and which we have used up to the present as the general and precise measure-
ment of the heavenly motions. Such a day, however, is defined differently by
different people: as the interval between two sunrises, by the Babylonians and
ancient Hebrews; between two sunsets, by the Athenians; from midnight to
midnight, by the Romans; and from noon to noon by the Egyptians.

In this period, it is clear, the terrestrial globe completes its own rotation as
well as what is added in the meantime by the annual revolution related to the
apparent motion of the sun. But this addition is variable, as is shown in the first
place by the sun’s variable apparent motion, and secondly by the natural day’s
connection with the [rotation around the] poles of the equator, whereas the
annual revolution [proceeds] along the ecliptic. For these reasons that apparent
time cannot be the general and precise measurement of motion, since the days
are not uniform with [the natural] day and with one another in every detail. It

was therefore necessary to select from these [days] some mean and uniform day

which would permit uniform motion to be measured without uncertainty.
Now around the poles of the earth in the course of an entire year 365 rota-
tions take place. These are increased by approximately a whole additional rota-
tion as the result of a daily prolongation due to the apparent advance of the sun.
Therefore the natural day exceeds the uniform [day] by Y3s0c0f that [additional
rotation]. Consequently we must define the uniform day and distinguish it
from the nonuniform apparent [day]. Accordingly, I call that [day] which con-
tains an entire rotation of the equator, plus as much as appears to be traversed
by the sun in its uniform motion during that time, the “uniform day.” By con-
trast, [I call that] day “nonuniform and apparent” which comprises the 360° of
a rotation of the equator, plus that which rises on the horizon or meridian
together with the apparent advance of the sun. Although the difference be-

tween these [uniform and nonuniform] days is quite small and imperceptible
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at the outset, nevertheless when several days are taken together, [the differ-
ence] adds up and becomes perceptible.

Of this [phenomenon] there are two causes: the nonuniformity of the ap-
parent sun, and the nonuniform rising of the oblique ecliptic. The first cause,
which is due to the nonuniform and apparent motion of the sun, has already
been made clear [1II, 16-17]. For in the semicircle whose midpoint is the higher
apse, halfway between the two mean apsides, in comparison with the degrees of
the ecliptic 4% time-degrees were lacking, according to Ptolemy [ Synzaxis, I11,
9]. The same number was in excess in the other semicircle, which contained the
lower apse. Hence the entire surplus of one semicircle over the other was 9¥2
time-degrees.

But in the second cause (the one connected with the risings and settings) a
very great difference occurs between the semicircles [containing] the two sol-
stices. This is [the difference] between the shortest and longest day. It varies very
much, being special for every single region. On the other hand, [the difference]
related to noon or midnight is everywhere confined within four limits. For, the
88° from 16° within the Bull to 14° within the Lion cross the meridian in about 93
time-degrees. The 92° from 14° within the Lion to 16° within the Scorpion cross
[the meridian] in 87 time-degrees. Hence in the latter case 5 time-degrees are
lacking, and in the former case the same number is in excess. Thus the sum of the
days in the first interval exceeds those in the second by 1o time-degrees = %5 of an
hour. This happens similarly in the other semicircle, where the situation is re-
versed within the remaining, diametrically opposite, limits.

Now the astronomers decided

to begin the natural day at noon or midnight, not at sunrise or sunset. For, the
nonuniformity connected with the horizon is more complicated, since it extends
over several hours. Moreover, it is not everywhere the same, but varies in a com-
plex way depending on the obliquity of the sphere. On the other hand, [the
nonuniformity] related to the meridian is the same everywhere, and simpler.
Consequently, the entire difference arising from the two aforementioned
causes—the apparent nonuniform motion of the sun and the nonuniform cross-
ing of the meridian—before Ptolemy, when the decrease started at the middle
of the Water Bearer, and the increase at the beginning of the Scorpion, amounted
to 8% time-degrees [Syntaxis, 111, 9]. At present, when the decrease extends
from 20° within the Water Bearer or thereabouts to 10° within the Scorpion,

and the increase [extends] from 10° within the Scorpion to 20° within the Wa-

199 Nicolaus Copernicus. De Revolutionibus Orbium Ceelestium, Libri VI. Nuremberg, 1543. THE WARNOCK LIBRARY

page 97r



ter Bearer, [the difference] has contracted to 7° 48" time-degrees. For, these
[phenomena] too change in time on account of the mutability of the perigee
and the eccentricity.

Finally, if the maximum variation in the precession of the equinoxes is also
added to the foregoing, the entire inequality in the natural days can rise above
10 time-degrees in several years. Herein a third cause of the nonuniformity in
the days has hitherto remained hidden. For, the rotation of the equator has
been found uniform with reference to the mean and uniform equinox, not to
the apparent equinoxes, which (as was quite clear) are not entirely uniform.
For, twice ten time-degrees = 1% hours, by which longer days can sometimes
exceed shorter days. In connection with the sun’s [apparent] annual motion
and the relatively slow motion of the other planets, these [phenomena] could
perhaps be neglected without any obvious error. But they should not be over-
looked at all, on account of the moon’s swift motion, which can cause a discrep-
ancy of %°.

Now uniform time may be compared with apparent, nonuniform [time] by
a method whereby all the variations are coordinated, as follows. Choose any
time. For both limits of this time, I mean, the beginning and the end, look up
the sun’s mean displacement from the mean equinox resulting from what I
have called the sun’s composite uniform motion. Also [look up] the true appar-
ent displacement from the true equinox. Determine how many time-degrees

have crossed in right ascension

at noon or midnight, or have intervened between [the right ascensions] from
the first true place to the second true [place]. For if [the time-degrees] are
equal to the degrees between both mean places, then the given apparent time
will be equal to the mean [time]. But if the time-degrees are in excess, add the
surplus to the given time. On the other hand, if [the time-degrees] are fewer,
subtract the difference from the apparent time. By so doing, from the sum or
remainder we shall obtain the time reduced to uniform [time], in taking four
minutes of an hour or ten seconds of a sixtieth of a day [10%] for every time-
degree. If the uniform time is given, however, and you want to know how much
apparent time is equivalent to it, follow the opposite procedure.

Now for the first Olympiad we had the mean distance of the sun from the
mean vernal equinox at noon on the first day of Hecatombaeon, the first Athe-
nian month, as 90° 59" [1II, 19], and from the apparent equinox as 0° 36 within

the Crab. For the years since Christ, the sun’s mean motion is 8° 2" within the
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Goat [III, 19], while the true motion is 8° 48" within the same sign. Therefore,
in the right sphere from 0° 36" within the Crab to 8° 48" within the Goat 178
time-degrees 54’ rise, exceeding the distance between the mean places by one
time-degree 51" = 7 hour-minutes. The procedure is the same for the rest, by
means of which a very precise examination can be made of the motion of the

moon, with which the next Book deals.
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Nicolaus Copernicus’

Revolutions
Book Four

In the preceding Book to the best of my limited ability I explained the phe-
nomena caused by the motion of the earth around the sun, and through the
same procedure I intend to analyze the motions of all the planets. Therefore
the moon’s motion confronts me now. This must be so, because it is principally
through the moon, which takes part in the day and the night, that the positions
of any asters whatever are found and verified. Secondly, of all [the heavenly
bodies] only the moon relates its revolutions as a whole, even though they are
very irregular, to the center of the earth, to which it is in the highest degree
akin. Therefore the moon, taken by itself, gives no indication that the earth
moves, except perhaps in its daily rotation. All the more for that reason it was
believed that the earth was the center of the universe and the common center
of all the revolutions. In expounding the moon’s motion I do not disagree with
the ancients’ belief that it takes place around the earth. But I shall also present
certain features at variance with what we have received from our predecessors
and in closer agreement with one another. By means of those features I may
determine the lunar motion too with greater certainty, as far as possible, in

order that its secrets may be more clearly understood.

The hypothesis concerning the lunar circles, according to the belief of the
ancients. Chapter1.

A property of the moon’s motion is that it follows, not the middle circle of the
zodiac, but its own circle, which is inclined to the middle circle, bisects it, is in
turn bisected by it, and crosses it into either latitude. These phenomena are
very much like the tropics in the annual motion of the sun since, of course,
what the year is to the sun, the month is to the moon. The mean places of the
intersections are called “ecliptics” [by some astronomers] and “nodes” by others.
The conjunctions and oppositions of the sun and moon which take place in

these points are called “ecliptic.”
For apart from these points, where eclipses of the sun and moon can occur, the
two circles have no other points in common. For when the moon is diverted to

other places, the result is that [these two luminaries] do not block each other’s
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light; on the contrary, as they pass on, they do not obstruct each other.

Furthermore, this tilted lunar circle, together with those four cardinal points
belonging to it, moves uniformly around the center of the earth nearly 3" a day,
completing a revolution in the nineteenth year. In this circle and its plane the
moon is seen moving always eastward. But sometimes its motion is very slight,
and at other times very great. For it is slower, the higher it is; and faster, the
nearer it is to the earth. This variation could be noticed more easily in the
moon than in any other body on account of its proximity [to the earth].

This phenomenon was understood to occur through an epicycle. As the
moon traveled along the upper [part of the epicycle’s] circumference, its speed
was less than the uniform speed; on the other hand, in traversing the lower
[part of the epicycle’s circumference], its speed exceeded the uniform speed.
The results achieved by an epicycle, however, can be accomplished by an eccen-
tric also, as has been proved [III, 15]. But an epicycle was chosen because the
moon was seen to exhibit a twofold nonuniformity. For when it was in the
epicycle’s higher or lower apse, no departure from the uniform motion was
apparent. On the other hand, when it was near the epicycle’s intersections [with
the deferent, the difference from the uniform motion occurred] not in a single
way. On the contrary, it was far greater at the waxing and waning half moon
than when the moon was full or new; and this variation occurred in a definite
and regular pattern. For this reason it was believed that the deferent on which
the epicycle moved was not concentric with the earth. On the contrary, an
eccentrepicycle [was accepted]. The moon moved on the epicycle in accord-
ance with the following rule: at every mean opposition and conjunction of the
sun and moon, the epicycle was in the apogee of the eccentric, whereas the
epicycle was in the perigee of the eccentric when the moon was halfway [be-
tween opposition and conjunction], at a quadrant’s [distance from them]. The
result was a conception of two uniform motions around the center of the earth
in opposite directions, namely, an epicycle moving eastward, and the eccentric’s
center and apsides moving westward, with the line of the sun’s mean place
always halfway between both. In this way the epicycle traverses the eccentric
twice a month.

To put these arrangements before the eyes, let the tilted lunar circle con-
centric with the earth be ABCD, quadrisected by the diameters AEC and BED.
Let the center of the earth be E. Let the mean conjunction of the sun and
moon lie on the line AC, and let the apogee of the eccentric, whose center is F,

and the center
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of the epicycle MN be in the same place at the same time. Now let the eccen-
tric’s apogee move westward as much as the epicycle moves eastward, while
they both uniformly execute around E equal monthly revolutions as measured
by the mean conjunctions with or oppositions to the sun. Let AEC, the line of
the sun’s mean place, always be midway between them, and let the moon also
move westward from the epicycle’s apogee. With matters so arranged, the phe-

nomena are thought to be in order. For in half a month’s time the epicycle

moves half a circle away from the sun, but
completes an entire revolution from the ec-
centric’s apogee. As a result, in half of this
time, which is about half moon, the epicycle
and the eccentric’s apogee are opposite each
other along diameter BD, and the epicycle on
the eccentric is at its perigee, as in point G.

There, having come closer to the earth, it en-

larges the nonuniformity’s variations. For of
equal magnitudes viewed at unequal distances, the one nearer to the eye looks
bigger. The variations will therefore be smallest when the epicycle is in A, but
greatest when the epicycle is in G. For MN, the diameter of the epicycle, will
have the smallest ratio to line AE, but a larger ratio to GE than to all the other
lines found in other places. For GE is the shortest of all the lines that can be
drawn from the center of the earth to the eccentric circle, and the longest of

them is AE or its equivalent DE.

The defect in those assumptions. Chapter 2.
This combination of circles was assumed by our predecessors to be in agree-
ment with the lunar phenomena. But if we analyze the situation more carefully,
we shall find this hypothesis neither suitable enough nor adequate, as we can
prove by reason and by the senses. For while our predecessors declare that the
motion of the epicycle’s center is uniform around the center of the earth, they
must also admit that it is nonuniform on its own eccentric (which it describes).
For example, take angle AEB = 45°, that is, half of a right angle, and equal
to AED, so that the whole angle BED is a right angle. Put the epicycle’s

center in G,

and join GF. GFD, being an exterior angle, obviously is greater than GEF, the
opposite interior angle. Also unequal, therefore, are arcs DAB and DG, even
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though they are both described in the same time. z

(I [
is greater than a quadrant. But at half moonboth | | \ \x. \‘ .
DAB and DG were shown to be semicircles [IV, | A /

[ y
1, end]. Therefore, the epicycle’s motion on the L’/

eccentric described by it is nonuniform. But if

=
\.'I

Hence, since DAB is a quadrant, DG, which ¥ ~ it
[\

o

meanwhile is described by the epicycle’s center, / .

—

,\
P \

.l-'"-r.-'-
h
——

this is so, what shall we say about the axiom that

the heavenly bodies’ motion is uniform and only apparently seems nonuniform, if
the epicycle’s apparently uniform motion is really nonuniform and its occurrence
absolutely contradicts an established principle and assumption? But suppose you
say that the epicycle moves uniformly with respect to the earth’s center, and that
this is enough to safeguard uniformity. Then what sort of uniformity will that be
on an extraneous circle on which the epicycle’s motion does not occur, whereas it
does occur on the epicycle’s own eccentric?

I am likewise disturbed about the moon’s uniform motion on the epicycle.
My predecessors decided to interpret it as unrelated to the earth’s center, to which
uniform motion as measured by the epicycle’s center should properly be related,
to wit, through line EGM. But [they related the moon’s uniform motion on the
epicycle] to a certain other point. Halfway between it and the eccentric’s center
lay the earth, and line IGH served as the indicator of the moon’s uniform motion
on the epicycle. By itself, this also is enough to prove the nonuniformity of this
motion, a conclusion required by the phenomena which follow in part from this
hypothesis. Thus, the moon’s motion on its epicycle is also nonuniform. If we
now want to base the apparent nonuniformity on nonuniform motions, it is evi-
dent what the nature of our reasoning will be. For will we do anything but furnish
an opportunity to those who malign this science?

Secondly, experience and our senses themselves show us that the lunar paral-
laxes are different from those indicated by the ratio of the circles. The parallaxes,
which are called “commutations,” occur on account of the perceptible size of the
earth in comparison with the proximity of the moon. For, straight lines drawn

from the earth’s surface and center to the moon do not appear parallel,

but intersect each other at a detectable angle on the body of the moon. They must
therefore produce a difference in the appearance of the moon. It seems to be in
one place to those who view it at an angle from the earth’s curvature and in a

different place to those who inspect the moon [along a line] from the earth’s
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center or point directly below [the moon]. Hence these parallaxes vary in accord-
ance with the distance from the earth to the moon. By agreement of all astrono-
mers, the greatest distance is 64% units, of which the earth’s radius = 1. According
to our predecessors’ model, the smallest distance should be 33 units, 33". As a
result the moon would approach us nearly halfway. The resulting ratio would
require the parallaxes at the smallest and greatest distances to differ from each
other by almost 1:2. I observe, however, that the parallaxes occurring in the wax-
ing and waning half moon, even when it is in the epicycle’s perigee, differ very
little or not at all from the parallaxes occurring in solar and lunar eclipses, as I
shall prove satisfactorily at the proper place [IV, 22]. But the error is evinced most
of all by the body of the moon, whose diameter would similarly look twice as
large and half as large. Now, circles are to each other as the squares of their diam-
eters. Thus, the moon would generally look four times larger, on the supposition
that it shone with its full disk, in quadrature, when nearest to the earth, than
when in opposition to the sun. But since [in quadrature] it glows with half its
disk, it would nevertheless emit twice the light which the full moon would show
if it were in that position. Although the contrary is self-evident, if anybody is
dissatisfied with ordinary vision and wants to observe with a Hipparchan dioptra
or any other instrument for measuring the moon’s diameter, he will find that it
varies only as much as required by the epicycle without that eccentric. Therefore,
while investigating the fixed stars through the place of the moon, Menelaus and
Timocharis did not hesitate to use at all times for the moon’s diameter the same

value of %° which the moon was usually seen to occupy.

A different opinion about the moon’s motion. Chapter 3.
It is accordingly quite clear that the epicycle looks bigger and smaller not on

account of an eccentric but on account of some other system of circles.

Let AB be an epicycle, which I shall call the first and larger epicycle. Let C be
its center, and D the center of the earth, from which draw the straight line DC
to the epicycle’s higher apse [A].With A as center, describe another epicyclet
EF, of small dimensions. Let all these constructions lie in the same plane, that
of the moon’s tilted circle. Let C move eastward, but A westward. On the other
hand, from F in the upper part of EF let the moon move eastward while main-
taining the following pattern: when line DC is aligned with the sun’s mean
place, the moon is always nearest to center C, that is, in point E; at the

quadratures, however, it is farthest in F.
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I say that the lunar phenomena agree with this
model. For it follows that the moon traverses the
epicyclet EF twice a month, during which time C re-
turns once to the sun. When new and full, the moon
will be seen to trace its smallest circle, namely, the one

with radius CE. On the other hand, in the quadratures

it will describe its largest circle, with radius CF. Thus, it
will also make the differences between uniform and
apparent motion smaller in the former positions and
larger in the latter positions, while it passes through simi-
lar but unequal arcs around center C. The [first] epicy-
cle’s center C will always be on a circle concentric with
the earth. The moon will therefore display parallaxes
which do not vary very much, but are connected only
with the epicycle. This will at once provide the reason

why the body of the moon is also seen virtually un-

changed. All the other phenomena related to the moon’s

motion will emerge just as they are observed.

I shall demonstrate this agreement later on by means of my hypothesis, al-
though the same phenomena can once more be produced by eccentrics, as I did
with regard to the sun, if the required ratio is maintained [III, 15]. I shall begin,
however, as I did above, [I11, 13-14], with the uniform motions, without which the
nonuniform motions cannot be ascertained. But here no mean problem arises
because of the aforementioned parallaxes. On account of them the moon’s place
cannot be observed by astrolabes and any other instruments whatever. But in this
area too nature’s kindliness has been attentive to human desires, inasmuch as the
moons place is determined more reliably through its eclipses than through the

use of instruments, and without any suspicion of error.

For while the rest of the universe is bright and full of daylight, night is clearly
nothing but the earth’s shadow, which extends in the shape of a cone and ends
in a point. When the moon encounters this shadow, it is darkened, and when it
is immersed in the midst of the darkness it is indubitably known to have reached
the place opposite the sun. On the other hand, solar eclipses, which are caused
by the interposition of the moon [between the earth and the sun], do not pro-
vide precise evidence of the moon’s place. For at that time we happen to see a

conjunction of the sun and moon which, as regards the center of the earth,
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either has already passed beyond or has not yet occurred, on account of the
aforementioned parallax. Therefore we do not see the same solar eclipse equal
in extent and duration in all countries, nor similar in its details. In lunar eclipses,
on the other hand, no such obstacle presents itself. They are everywhere iden-
tical, since the axis of that darkening shadow is cast by the earth from [the
direction of ] the sun through its own center. Lunar eclipses are therefore most
suitable for ascertaining the moon’s motion with the most highly certain com-

putation.

The moon’s revolutions, and the details of its motions. Chapter 4.

Among the earliest astronomers who strove to transmit numerical information
about this subject to posterity there is found Meton the Athenian, who flour-
ished in about the 87th Olympiad. He declared that 235 months were com-
pleted in 19 solar years. This great period is accordingly called the Metonic
enneadekaeteris, that is, 19-year cycle. This number was so popular that it was
displayed in the market place at Athens and other very famous cities. Even up
to the present time it is widely accepted because it is believed to fix the begin-
ning and end of the months in a precise order, and also to make the solar year of
365Y4 days commensurable with the months. From it [came] the Callippic pe-
riod of 76 years, in which 1 day is intercalated 19 times, and which is labeled the
“Callippic cycle.” But Hipparchus ingeniously discovered that in 304 years a
whole day was in excess, which was corrected only by shortening the solar year
by Y300 of a day. Hence some astronomers named that extensive period in which

3,760 months were completed the “Hipparchan cycle.”

These computations are stated too simply and too crudely when it is also a
question of the cycles of the anomaly and latitude. These topics were therefore
investigated further by Hipparchus [ Synzaxis, IV, 2-3]. For he compared the records
of his very careful observations of lunar eclipses with those which he received
from the Babylonians. He determined the period in which the cycles of the months
and of the anomaly were completed at the same time to be 345 Egyptian years, 82
days, 1 hour. In that interval 4,267 months and 4,573 cycles of the anomaly were
completed. When the indicated number of days, to wit, 126,007 days, 1 hour, is
divided by the number of months, 1 month is found = 29 days 31" 50" 8 9"~

rrrrr

monthly revolution are divided by the duration of a month, the daily motion of

rrrrr

the moon away from the sunis 12°11" 26" 41" 20" 18"”"". This number, multiplied
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by 365, makes the annual motion 129° 37" 21”7 28" 29" in addition to 12 revolu-
tions. Furthermore, 4,267 months and 4,573 revolutions of the anomaly are
factorable numbers having 17 as a common factor. Reduced to their lowest terms,
they stand in the ratio 251:269. This will give us, in accordance with Euclid, V, 13,
the ratio of the moon’s motion to the motion of the anomaly. When we multiply
the moon’s motion by 269 and divide the product by 251, we shall obtain the
annual motion of the anomaly, after 13 complete revolutions, as 88° 43" 8" 40"
20" Therefore, the daily motion will be 13°3" 53" 56" 29""".

The cycle of latitude has a different rhythm, for it does not coincide with
the precise interval in which the anomaly returns. We know that a lunar lati-
tude has recurred only when a later lunar eclipse is in all respects similar and
equal to an earlier eclipse so that, for instance, on the same side both darkened
areas are equal, I mean in extent and duration. This happens when the moon’s
distances from the higher or lower apse are equal. For at that time the moon is

known to have passed through equal shadows in equal times.

Such a recurrence, according to Hipparchus, happens in 5,458 months, corre-
sponding to 5,923 cycles of latitude. This ratio also made clear the detailed
latitudinal motion in years and days, like the other motions. For when we mul-
tiply the moon’s motion away from the sun by 5,923 months, and divide the
product by 5,458, we shall have the moon’s latitudinal motion in a year, after 13
revolutions, as 148° 42" 46" 49" 3", and in a day as 13° 13" 457 39" 40", In this
way Hipparchus computed the moon’s uniform motions, which nobody before
him had approached more closely. Nevertheless, later centuries showed that
they were still not determined with complete accuracy. For Ptolemy found the
same mean motion away from the sun as Hipparchus. Yet Ptolemy’s value for
the annual motion in anomaly was 1 117" 39" lower than Hipparchus’, but for
the annual motion in latitude 53" 417" higher. After the passage of more time
I found that Hipparchus’ [value for the] mean annual motion was 17 2" 49"

too low, whereas for the anomaly he was only 24" 49" short. For the motion in

;;;;;

1rrs

; its motion in anomaly by 88° 43

”5"" 9", and its motion in latitude by 148° 42" 45" 177" 217",
95 9 Y 140" 42 45 17
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The Moon’s Motion in Years and Periods of Sixty Years

Egyp- Motion
tian
Years | 60° °
I 2 9 37 22 36
2 4 19 14 45 12
3 o 28 52 7 49
4 2 38 29 30 25
5 4 48 6 53 2
6 o 57 | 44 | 15 | 38
7l 3 | 7 || 38| i
3 5 16 59 o 51
9 I 26 36 23 27
10 3 36 | 13 | 46 4
I 5 45 51 8 40
12 I 55 28 31 17
3 4 5 5 53 53
14 o 14 43 16 29
15 2 24 20 39 6
16 4 33 | S8 I 42
17 o 43 35 24 19
18 2 53 2 46 55
19 5 2 50 9 3t
20 I 12 27 32 8
21 3 2 | 4 | 54 | 44
22 5 31 42 7 21
23 I 41 19 39 57
24 3 50 57 2 34
25 o o 34 25 10
26 2 10 I 47 46
27 4 19 49 10 23
28 o 29 26 32 59
29 2 39 3 55 | 36
30 4 48 41 18 12

Christian Era 209°58”
Egyp- Motion
tian
Years | 60° °
31 o 58 18 40 48
32 3 7 56 3 25
33 5 17 | 33 | 26 I
34 I 27 10 48 38
35 3 36 | 48 | m | 14
36 5 46 | 25 | 33 51
37 I 56 2 56 | 27
38 4 5 40 | 19 3
39 | o 15 | 17 | 41 | 40
40 2 24 | 55 4 16
41 4 | 34 | 32 | 26 | 53
42 o 44 9 49 | 29
43 2 53 | 47 | 12 5
44 5 3 24 | 34 | 42
45 | 1 | B | 1 |57 | 18
46 3 22 | 39 | 19 55
47 5 32 | 16 | 42 | 31
48 I 41 54 5 8
49 | 3 ST 31 | 27 | 44
50 o I 8 50 20
51 2 10 46 I2 57
52 4 | 20 | 23 | 35 | 33
53 o 30 o 58 10
54 2 39 | 38 | 20 | 46
55 4 | 49 | 5 | 43 | 22
56 o 58 | 53 5 59
57 3 8 30 | 28 35
58 5 18 7 5I 12
59 I 27 | 45 3 48
60 3 37 22 36 25
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Periods of Sixty Days, and Day-Minutes

The Moon’s Motion in Days,

Motion
Days | ¢0° °
1 o 12 I 26 41
2 o 24 22 53 23
3 o 36 | 34 | 20 4
4 o 48 | 45 | 46 | 46
5 I o 57 13 27
6 I 13 8 40 9
7 I 25 20 6 50
8 1 37 | 3t 33 | 32
9 I 49 43 o 3
10 2 I 54 26 55
11 2 14 5 53 | 36
2 2 26 17 20 18
13 2 38 28 47 o
14 2 50 40 13 41
15 3 2 51 40 22
16 3 15 3 7 4
17 3 27 14 33 45
18 3 39 26 o 27
19 3 st 37 | 27 8
20 4 3 48 53 50
21 4 16 o 20 31
22 4 28 II 47 13
23 4 40 23 13 54
24 4 52 | 34 | 40 | 36
25 5 4 | 46 | 7 | 17
26 5 16 | 57 | 33 | 59
27 5 29 9 o 40
28 5 41 20 27 22
29 5 53 3t 54 3
30 6 5 43 | 20 | 45

Motion
Days | 60° °
31 6 17 54 47 26
32 6 30 6 14 3
33 6 | 42 | 17 | 40 | 49
34 6 54 | 29 7 31
35 7 6 | 40 | 34 | 12
36 7 18 52 o 54
37| 7 | 3| 3 27 | 35
38 7 43 | 14 | 54 | 17
39 7 55 | 26 | 20 | S8
40 8 7 37 | 47 | 4°
41 8 19 49 14 21
42 8 32 o 41 3
43 8 44 12 7 44
44 8 56 23 | 34 | 26
45 9 8 35 I 7
46 9 20 | 46 27 | 49
47 | 9 | 32 | 57 | 54 | 30
8| 9 | 45 | 9 a | 12
49 | 9 | 57| 20 | 47| 33
50 | 0o | 9 | 32 | 14 | 35
5I 10 21 43 41 16
52 10 33 55 7 58
53 | 10 | 46 6 34 | 40
54 10 58 18 I 21
55 I 10 29 28 2
56 | 1 | 22 | 40 | 54 | 43
57 I 34 52 21 25
8 | m | 47 | 3 48 7
59 Ir 59 15 14 | 48
60 12 11 26 41 31
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The Moon’s Motion in Anomaly in Years

and Periods of Sixty Years Christian Era 207°7°
Motion Motion
Years | ¢0° ° Years | 60° °

I I 28 | 43 9 7 31 3 50 17 | 42 | 44
2 2 57 26 18 14 32 5 19 o) 51 52
3 4 26 9 27 | 2t 33 o 47 | 44 o 59
4 5 54 52 36 29 34 2 16 27 10 6
5 I 23 35 45 36 35 3 45 10 19 13
6 2 52 18 54 43 36 5 13 53 28 21
7 4 21 2 3 50 37 o 42 | 36 | 37 | 28
8 5 49 | 45 | 58 38 2 II 19 | 46 | 35
9 I 18 28 22 5 39 3 40 2 55 42
10 2 47 I 31 12 40 5 3 46 4 50
I 4 15 54 40 19 41 o 37 29 13 57
2 5 44 | 37 | 49 | 27 42 2 6 | 23 4
3 I 13 20 58 34 43 3 34 55 32 I
14 2 42 4 7 41 44 5 3 38 41 19
15 4 10 47 16 48 45 o 32 21 50 26
16 5 39 | 30 | 25 | 56 46 2 I 4 59 | 33
17 1 8 13 35 3 47 3 29 | 48 8 40
18 2 36 56 44 10 48 4 58 31 17 48
19 4 5 39 | 53| 17 49 o 27 | 14 | 26 | 55
20 5 34 | 23 2 25 50 I 55 | s7 | 36 2
21 I 3 6 I 32 5I 3 24 40 45

22 2 3t 49 20 39 52 4 53 23 54 17
23 4 o 32 29 46 53 o 22 7 3 24
24 5 29 15 38 54 54 I 50 50 2 3t
25 o 57 ] 58 | 48 I 55 3 19 33 21 38
26 2 26 41 57 8 56 4 48 16 30 46
27 3 55 25 6 15 57 o 16 | 59 | 39 | 53
28 5 24 8 15 23 58 I 45 42 49

29 o 52 5t 24 | 30 59 3 14 | 25 | 38 7
30 2 21 34 33 37 60 4 43 9 7 15

Nicolaus Copernicus. De Revolutionibus Orbium Ceelestium, Libri VI. Nuremberg, 1543. THE WARNOCK LIBRARY

page 103v




The Moon’s Motion in Anomaly in Days,
Periods of Sixty Days. and Day-Minutes

Motion Motion
Days | ¢0° ° Days | 60° °

I o 13 3 53 56 31 6 45 o 52 I
2 o | 26 7 | 47 | 3 32 6 | 58 4 | 46 8
3 o 39 I 41 49 33 7 II 8 40 4
4 o 52 15 35 | 46 34 7 24 | 12 | 34 I
5 I 5 19 | 29 | 42 35 7 | 37| 6 | 27 | 57
6 I 18 23 23 39 36 7 50 20 21 54
7 1 3t |27 | 17|35 37 8 3 24 | 15 | 50
3 I 44 31 11 32 38 3 16 28 9 47
9 I 57 | 35 5 28 39 8 29 | 32 3 43
Io 2 Io 38 59 25 40 8 42 35 57 40
I 2 23 42 53 21 41 8 55 39 51 36
12 2 36 | 46 | 47 | 18 42 9 8 43 | 45 | 33
3 2 49 50 41 14 43 9 21 47 39 29
14 3 2 54 35 I 44 9 34 51 33 26
15 3 15 58 29 7 45 9 47 | 55 27 | 22
16 3 29 2 23 4 46 10 o 59 21 19
17 3 42 6 7 o 47 10 14 3 15 15
18 3 55 10 10 57 48 10 27 7 9 12
19 4 8 14 4 53 49 | 10 | 40 II 3 8
20 4 21 17 58 50 50 10 53 14 57 5
21 4 34 21 52 46 5I I 6 18 5I I
22 4 47 25 | 46 | 43 52 I 19 22 | 44 | 58
23 5 o 29 40 39 53 I 32 26 38 54
24 5 13 33 34 36 54 I 45 30 32 51
25 5 26 | 37 | 28 | 32 55 mo| 58 | 34 | 26 | 47
26 5 39 41 22 29 56 12 11 38 20 44
27 5 52 | 45 | 16 | 25 57 | 12 | 24 | 42 | 14 | 40
28 6 5 49 10 22 58 12 37 46 8 37
29 6 18 53 4 18 59 12 50 50 2 33
30 6 3t | 56 | 38 15 6o | 13 3 53 | 56 | 30
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The Moon’s Motion in Latitude in Years and Periods of Sixty Years page 104v
Christian Era 129° 45
Motion Motion
Years | ¢0° ° Years | 60° °
I 2 28 | 42 | 45 7 31 4 50 5 23 57
2 4 57 25 30 | 34 32 I 18 48 9 14
3 I 26 8 15 52 33 3 47 30 54 32
4 3 54 51 I 9 34 o 16 13 39 48
5 o 23 | 33 | 46 | 26 35 2 44 | 56 | 25 6
6 2 52 16 31 44 36 5 13 39 10 24
7 5 20 59 17 I 37 I 42 21 55 41
8 I 49 42 2 18 38 4 I 4 40 58
9 4 8 | 24 | 47 | 36 39 | o | 39 | 47 | 26 | 16
10 o 47 7 32 | 53 40 3 8 30 Ir 33
11 3 15 50 18 10 41 5 37 12 56 50
12 5 44 | 33 3 28 42 2 5 55 42 8
3 2 13 15 48 | 45 43 4 34 | 38 27 25
4 | 4 41 | 58 | 34 2 44 1 3 2 | 12 | 42
15 I 10 41 19 20 45 3 32 3 58 o
16 3 39 | 24 4 37 46 o o 46 | 8 | 17
17 o 8 6 49 | 54 47 2 29 | 29 | 28 | 34
18 2 36 49 35 12 48 4 58 12 13 52
19 5 5 32 20 29 49 I 26 54 59 8
20 I 4 | 15 5 46 50 3 55 | 37 | 44 | 26
21 4 2 57 51 4 51 o 24 20 29 44
22 o 31 40 36 21 52 2 53 3 15 I
23 3 o 23 21 38 53 5 21 46 o 18
24 5 29 6 6 56 54 I 50 | 28 | 45 | 36
25 I 57 48 52 13 55 4 19 I 30 53
26 4 26 31 37 30 56 o 47 54 16 10
27 o 55 14 22 48 57 3 16 37 I 28
28 3 23 | 57 8 5 58 5 45 | 19 | 46 | 45
29 5 52 39 53 22 59 2 14 2 32 2
30 2 21 22 38 40 60 4 42 45 17 21
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The Moon’s Motion in Latitude in Days,
and Periods of Sixty Days, and Day-Minutes
Motion Motion
Days | ¢0° ° Days | 60° °

I o 13 3| 45 | 39 3 6 | 50 6 35 | 20

2 o 26 27 31 18 32 7 3 20 20 59
3 o | 39 | 41 | 16 | 58 33 7 16 | 34 6 39
4 o 52 55 2 37 34 7 29 | 47 | 52 18
5 I 6 8 48 | 16 35 7 43 I 37 | S8
6 I 19 | 22 | 33 | 56 36 7 56 | 15 | 23 | 57
7 I 32 | 36 | 19 | 35 37 8 9 29 9 16
8 I 45 | 50 5 14 38 8 22 | 42 | 54 | 56
9 I 59 3 50 | 54 39 8 35 | 56 | 40 | 35
10 2 12 17 36 33 40 3 49 10 26 14
I 2 25 31 22 3 41 9 2 24 I 54
12 2 38 45 7 52 42 9 15 37 | 57 33
3 2 5t 58 53 3t 43 9 28 | 51 43 13
4 | 3 5 | 39 | m 44 | 9 | 42 | 5 | 28 | 52
5| 3 | 8 | 26 | 24 | 50 45 | 9 | 55| 19 | 14 | 3t
16 3 31 40 10 29 46 10 8 33 o I
17 3 44 | 53 | 356 9 47 | 10 | 21 | 46 | 45 | 50
18 3 58 7 41 48 48 10 35 o 3I 29
19 4 I 21 27 28 49 10 48 14 17 9
20 4 24 35 13 7 50 I I 28 2 48
21 4 37 48 58 46 5I I 14 41 48 28
22 4 51 2 44 26 52 53 27 55 34 7
23 5 4 16 | 30 5 53 o4 9 19 | 46
24 | 5 17 | 30 | 15 | 44 54 | 1 | s4 | 23 | 5 | 26
25 5 30 | 44 I 24 55 | 12 7 | 36 | st 5
26 5 43 | 57 | 4 3 6 | 12 | 20 | 50 | 36 | 44
27 5 57 I 32 43 57 12 34 4 22 24
28 6 10 25 18 22 58 12 47 18 3 3
29 | 6 | 23 | 39 | 4 1 50 | B | o | 3 | 53| 43
30 6 36 | 52 | 49 | 41 6o | 13 3| 45 | 39 | 22

Exposition of the first lunar inequality, which occurs at new and full

moon. Chapter .

I have set forth the moon’s uniform motions to the extent that I have been able
to familiarize myself with them up to the present time. Now I must tackle the
theory of the nonuniformity, which I shall expound by means of an epicycle. I
shall begin with that inequality which occurs in conjunctions with and opposi-
tions to the sun. With regard to this inequality the ancient astronomers used
sets of three lunar eclipses with marvelous skill. I too shall follow this path
which they have prepared for us. I shall take three eclipses carefully observed
by Ptolemy. I shall compare them with three other no less carefully observed

eclipses, in order to test whether the uniform motions set forth above are cor-
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rect. In expounding them I shall imitate the ancients by treating the mean
motions of the sun and moon from the place of the vernal equinox as uniform.
For, the irregularity which occurs on account of the nonuniform precession of
the equinoxes is not perceived in so short a time, even though it is ten years.

For his first eclipse Ptolemy [Synzaxis, IV, 6] takes the one which oc-
curred in Emperor Hadrian’s 17th year after the end of the 20th day of the
month Pauni according to the Egyptian calendar. This was 133 A.D., 6 May =
the day before the Nones of May. The eclipse was total. Its midtime was ¥ of
a uniform hour before midnight at Alexandria. But at Frombork or Cracow it
would have been 1% hours before the midnight which was followed by 7 May.
The sun was at 13%° within the Bull, but at 12° 21" within the Bull according
to its mean motion.

Ptolemy says that the second eclipse occurred in Hadrian’s 19th year after
the end of the second day of Choiach, the fourth Egyptian month. This was 20
October 134 A.D. The darkened area spread from the north over % of the moon’s
diameter. The midtime preceded midnight by 1 uniform hour at Alexandria,
but by 2 hours at Cracow. The sun was at 25%° within the sign of the Balance,
but at 26° 43" within the same sign according to its mean motion.

The third eclipse occurred in Hadrian’s year 20, after the end of the 19th
day of Pharmuthi, the eighth Egyptian month.

This was after the end of 6 March 136 A.p. The moon was again in shadow in
the north up to half of its diameter. The midtime was 4 uniform hours at Alex-
andria, but at Cracow 3 hours, after the midnight followed by 7 March. The sun
was then at 14° 5" within the Fishes, but at 11° 44" within the Fishes according to
its mean motion.

During the time between the first eclipse and the second the moon clearly
traveled as far as the sun did in its apparent motion, that is (I mean, after whole
circles are eliminated), 161° 557; and 138° 55" between the second eclipse and the
third. In the first interval there were 1 year, 166 days, 23% uniform hours ac-
cording to the appearances, but 23% hours after correction. In the second inter-
val there were 1 year, 137 days, 5 hours simply, but 5% hours correctly. The com-
bined uniform motion of the sun and moon in the first period, after the elimi-
nation of [complete] circles, was 169° 37, and the [moon’s] motion in anomaly
was 110° 21" In the second interval, similarly, the [combined] uniform motion
of the sun and moon was 137° 34, while the [moon’s] motion in anomaly was 81°

36'. Clearly, then, in the first interval 110° 21" of the epicycle subtract 7° 42" from
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the moon’s mean motion; and in the second interval 81°36 [of the epicycle] add
1° 21" [to the moon’s mean motion].

Now that this information has been set forth, draw the lunar epicycle ABC.
On it let the first eclipse be at A, the second at B, and the last at C. Let the
moon’s motion be taken also in that direction, westward in the upper part [of
the epicycle]. Let arc AB = 110° 21" which, as I said, subtracts 7° 42" [from the
moon’s mean motion on the ecliptic]. Let BC = 81°36’, which adds 1° 21" [to the
moon’s mean motion on the ecliptic]. CA, the rest of the circle, will be 168° 3,
which adds the remaining 6° 21”. The epicycle’s higher apse is not in arcs BC
and CA, since they are additive and less than a semicircle. Therefore it must be
found in AB.

Now take D as the earth’s center, around which the epicycle moves uni-
tormly. From D draw lines DA, DB, and DC to the points of the eclipses. Join
BC, BE, and CE. Since arc AB subtends 7° 42" of the ecliptic, angle ADB will
be 7° 42" with 180° = 2 right angles, but 15° 24" with 360° = 2 right angles.

In similar degrees, angle AEB = 110° 21" at the cir-
cumference, and it is an angle exterior to triangle BDE.
Hence angle EBD is given as 94° 57°. But when the
angles of a triangle are given, the sides are given, and
DE = 147,396 units, and BE = 26,798 units, of which
the diameter of the circle circumscribing the triangle
= 200,000. Furthermore, since arc AEC subtends 6°
21" on the ecliptic, angle EDC will be 6° 21" with 180°
= 2 right angles, but 12° 42" with 360° = 2 right angles.
In those degrees angle AEC =191°57". Being an angle
exterior to triangle CDE, it leaves, after the subtrac-
tion of angle D, the third angle ECD =179°15” in the
same degrees. Therefore sides DE and CE are given
as 199,996 and 22,120 units, of which the diameter of
the circumscribed circle = 200,000. But in the units
of which DE = 147,396 and BE = 26,798, CE = 16,302.
Once again, therefore, in triangle BEC two sides, BE

and EC, are given, and angle E = 81° 36" = arc BC.
Hence we shall also have the third side BC = 17,960

of those same units, in accordance with the theorems

in Plane Triangles. When the epicycle’s diameter = -
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200,000 units, chord BC, which subtends 81° 36", will be 130,684 units. As for
the other lines in the given ratio, in such units ED = 1,072,684 and CE = 118,637,
while its arc CE = 72° 46" 10”". But by construction arc CEA = 168°3". There-
tore the remainder EA = 95°16” 507", and its subtending chord = 147,786 units.
Hence the whole line AED = 1,220,470 of the same units. But since segment

EA is less than a semicircle, the epicycle’s center will not be in it, but in the

remainder ABCE.

Let the epicycle’s center be K. Through both apsides draw DMKL. Let LL
be the higher apse, and M the lower apse. Clearly, in accordance with Euclid,
I1I, 30, the rectangle formed by AD x DE = the rec- [ e
tangle formed by LD x DM. But K is the midpoint |= {-"-.f"'f \
of the circle’s diameter LM, of which DM is an ex- '
tension in a straight line. Therefore rectangle LD x
DM + (KM)? = (DK)2 Consequently DK is given in
length as 1,148,556 units, of which LK = 100,000.
Hence, in units of which DKL = 100,000, LK will be
8,706, and this is the epicycle’s radius.

3B
.1' |

7

:\ /'} / ."
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After completing these steps, draw KNO perpen-
dicular to AD. The ratio of KD, DE, and EA to one
another is given in units of which LK = 100,000. In g
those same units NE =% (AE) = 73,893. Therefore the P+
whole line DEN = 1,146,577. But in triangle DKN two

T E . 2R T

sides, DK and ND, are given, and N is a right angle.
Therefore, central angle NKD = 86°38%" = arc MEO. |
LAO, the rest of the semicircle = 93° 21%". From LAO |3
subtract AO =% (AOE) = 47°38%2". The remainder LA |@

= 45°43". This is the moon’s anomaly or its distance from

the epicycle’s higher apse in the first eclipse. But the
whole of AB = 110° 21°. Therefore the remainder LB = li
the anomaly in the second eclipse = 64°38". The whole [,

arc LBC = 146° 14’, where the third eclipse occurred. D

Now, with 360° = 4 right angles, angle DKN = 86°38". When this is subtracted from
a right angle, obviously the remaining angle KDN = 3° 22". This is the
prosthaphaeresis added by the anomaly in the first eclipse. But the whole angle
ADB =7° 42". Therefore the remainder LDB = 4°20". This is what arc LB subtracts

from the moon’s uniform motion in the second eclipse. Angle BDC =1°21".
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Therefore the remainder CDM = 2°59°, the prosthaphaeresis subtracted by arc
LBC in the third eclipse. Therefore the moon’s mean place, that is, center K, in
the first eclipse was 9° 53" within the Scorpion, because its apparent place was
within the Scorpion at 13°15”, I mean, exactly as much as the sun’s place within
the Bull, diametrically opposite. In the same way in the second eclipse the
moon’s mean motion was at 29%2°within the Ram, and in the third eclipse at 17°
4" within the Virgin. The moon’s uniform distances from the sun were 177°33
in the first eclipse; 182° 47" in the second; and 185° 20" in the last eclipse. The
foregoing was Ptolemy’s procedure [ Synzaxis, IV, 6].

Following his example, let me now proceed to the second set of three lunar
eclipses, which I observed very carefully, like him. The first one occurred at the
end of 6 October 1511 A.D. The moon began to be eclipsed 1% uniform hours
before midnight, and was fully illuminated again 2% hours after midnight. Thus,
the middle of the eclipse was 72 of an hour after the midnight followed by 7
October = the Nones of October. This was a total eclipse of the moon, when
the sun was at 22° 25" within the Balance, but at 24° 13" within the Balance
according to its uniform motion.

I observed the second eclipse at the end of 5 September 1522 A.D. This too
was a total eclipse. It began at %e00f a uniform hour before midnight, but its
midtime was 1% hours after the midnight followed by 6 September = the eighth
day before the Ides of September. The sun was at 22¥68 within the Virgin, but at
23° 59" within the Virgin according to its uniform motion.

The third eclipse occurred after the end of 25 August 1523 A.D. It began 240
hours after midnight. The midtime, which also was total, was 4 %2 hours after
the midnight followed by 26 August. The sun was at 11° 21" within the Virgin,
but at 13° 2" within the Virgin according to its mean motion.

Once again, the distance traversed by the true places of the sun and moon

between the first eclipse and the second obviously was 329° 477;

and between the second eclipse and the third, 349° 9". The time from the first
eclipse to the second is 10 uniform years, 337 days, plus % of an hour according
to apparent time, but 4eof an hour according to corrected uniform time. From
the second eclipse to the third, there were 354 days, plus 3 hours and 5 minutes,
but 3 hours, 9 minutes, according to uniform time. In the first interval the
combined mean motion of the sun and moon, after the elimination of [com-
plete] circles, amounts to 334° 47”; and the [moon’s] motion in anomaly to 250°

36°, with about 5° to be subtracted from the uniform motion. In the second
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interval the mean motion of the sun and moon is
346°107; and the [lunar] anomaly, 306° 43", with 2°
59 to be added to the mean motion.

Now let ABC be the epicycle. Let A be the
place of the moon at the middle of the first eclipse;
B of the second; and C, of the third. Let the epi-
cycle be regarded as moving from C to B, and from
B to A; that is, westward in its upper circumfer-
ence, and eastward in its lower circumference. Let
arc ACB = 250°36, subtracting, as I said, 5° from
the moon’s mean motion in the first period of time.
Letarc BAC =306° 43", adding 2°59” to the moon’s

mean motion. As a remainder, therefore, arc AC =

197°19°, subtracting the remaining 2°1". Since AC
is greater than a semicircle and is subtractive, it
must contain the higher apse. For this cannot be
in BA or CBA, each of which is less than a semi-
circle and additive, whereas the diminishing mo-
tion occurs near the apogee.

Opposite it take D as the center of the earth.

Join AD, DB, DEC, AB, AE, and EB. As regards
triangle DBE, exterior angle CEB is given = 53° 17" = arc CB, the remainder

when BAC is subtracted from the circle. Angle BDE at the center = 2° 59", but
at the circumference = 5° 58”. Therefore the remaining angle EBD = 47° 19",
Consequently side BE = 1,042 units, and side DE = 8,024 units, of which

the radius of the circle circumscribing the triangle = 10,000. In like manner
angle AEC =197°19’, since it intercepts arc AC. At the center angle ADC = 2°
1, but = 4°2” at the circumference. Therefore in triangle [ADE] the remaining
angle DAE = 193° 177, with 360° = 2 right angles. Consequently the sides are
also given. In units of which the radius of the circle circumscribing triangle
ADE = 10,000, AE =702, and DE =19,865. But in units of which DE = 8,024,
and EB = 1,042, AE = 283.

Once more, then, we have a triangle ABE, in which two sides, AE and EB,
are given, and the whole angle AEB = 250° 36, when 360° = 2 right angles.
Hence, in accordance with the theorems on Plane Triangles, AB = 1,227 units,

of which EB = 1,042. We have thus obtained the ratio of these three lines, AB,
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EB, and ED. In units of which the epicycle’s ra-
dius = 10,000, and the given arc AB subtends
16,323, this ratio will also make known that ED =
106,751 and EB = 13,853. Hence arc EB is also
given = 87° 41". When this is added to BC, the
total EBC = 140° 58", Its subtending chord CE =
18,851 units, and CED as a whole = 125,602 units.

Now emplace the epicycle’s center, which
must fall in segment EAC, since this is greater
than a semicircle. Let the center be F. Prolong
DIFG in a straight line through both apsides, 1
the lower, and G the higher. Once more, obvi-
ously, rectangle CD x DE = rectangle GD x DI.
But rectangle GD x DI + (FI)? (DF)?. Therefore
in length DIF is given = 116,226 units, of which
FG = 10,000. Then, in units of which DF =

100,000, FG = 8,604 units, in agreement with

what I find reported since Ptolemy by most other

astronomers before me.

Now from center F drop FL perpendicular to EC, and extend it in straight
line FLLM, which will bisect CE in point L. Straight line ED = 106,751 units.
Half of CE = LE = 9,426 units. The sum, DEL = 116,177 units, of which FG =
10,000, and DF = 116,226. Therefore in triangle DFL two sides, DF and DL,
are given. Angle DFL = 88° 21" is also given, and the remaining angle FDL =1°
39". Arc IEM is likewise = 88° 21". MC = % EBC = 70° 29". IMC as a whole =
158° 50". The rest of the semicircle = GC = 21°10".

This was the moon’s distance from the epicycle’s apogee, or the place of the
anomaly in the third eclipse; in the second eclipse, GCB = 74° 27’; and in the
first eclipse, the whole arc GBA = 183° 51". Furthermore, in the third eclipse
IDE as a central angle = 1° 39/, which is the subtractive prosthaphaeresis. In the
second eclipse the whole angle IDB, also a subtractive prosthaphaeresis, = 4°
38’, for it consists of GDC =1°39" and CDB = 2° 59". Therefore, when IDB is
subtracted from the whole angle ADB = 5°, the remainder is ADI = 22", which

are added to the uniform motion in the first eclipse. Therefore, the moon’s
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uniform place in the first eclipse was 22° 3 within the Ram, but its apparent
place was 22° 25’, as many degrees as the sun had in the Balance, the opposite
sign. So also in the second eclipse the moon’s mean place was at 26° 50" within
the Fishes; and in the third eclipse at 13° within the Fishes. The moon’s mean
motion, by which it is separated from the earth’s annual motion, in the first

eclipse was 177° 51 in the second, 182° 51 and in the third, 179° 58"

Verification of the statements about the moon’s uniform motions in longi-
tude and anomaly. Chapter 6.

What has been said about the lunar eclipses will also permit us to test whether
the above statements about the moon’s uniform motions are correct. In the first
set of eclipses, the moon’s distance from the sun in the second eclipse was

shown to be 182° 47/, and the anomaly was 64°38".

In the later set of eclipses in our time, in the second eclipse the moon’s motion
away from the sun was 182° 51, and the anomaly was 74° 27". Clearly, in the
intervening period there are 17,166 complete months plus about 4 minutes, while
the motion in anomaly was 9° 49/, after the elimination of complete circles.
From Hadrian’s year 19, in the Egyptian month Choiach, on the 2nd day, 2
hours before the midnight followed by the third day of the month, until 1:20
A.M., 5 September 1522 A.D., there are 1,388 Egyptian years, 302 days, plus 3%
hours in apparent time = 3h 34m in uniform time. In this interval, after the
complete revolutions in 17,165 uniform months, there would have been 359° 38’
according to Hipparchus and Ptolemy. On the other hand, the anomaly was ¢°
39" according to Hipparchus but according to Ptolemy 9° 11", For both of them
the moon’s motion is deficient by 26°, while the anomaly lacks 38" in Ptolemy’s
case, and in Hipparchus’ case 10". When these shortages are added, the results

agree with the computations set out above.

The epochs of the lunar longitude and anomaly.  Chapter 7.

Here too, as before [I1I, 23], I must determine the positions of the lunar longi-
tude and anomaly at the established beginnings of eras: the Olympiads, Alex-
ander’s, Caesar’s, Christ’s, and any other which may be desired. Of the three
ancient eclipses, let us consider the second one, which occurred in Hadrian’s
year 19, on the 2nd day of the Egyptian month Choiach, 1 uniform hour before
midnight at Alexandria = 2 hours before midnight for us on the meridian of

Cracow. From the beginning of the Christian era to this moment, we shall find
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133 Egyptian years, 325 days, plus 22 hours simply, but 21 hours, 37 minutes
exactly. During this time the moon’s motion, according to my computation, is

332° 49’, and the motion in anomaly is 217° 32".

When each of these figures is subtracted from the corresponding figure found
in the eclipse, the remainder for the moon’s mean distance from the sun is 209°
58', and 207° 7" for the anomaly, at the beginning of the Christian era at mid-
night preceding 1 January.

Prior to this Christian epoch there are 193 Olympiads, 2 years, 194% days =
775 Egyptian years, 12 days, plus %2 day, but 12 hours, 11 minutes in exact time.
Similarly, from the death of Alexander to the birth of Christ there are reckoned
323 Egyptian years, 130 days, plus %2 day in apparent time, but 12 hours, 16 min-
utes, in exact time. From Caesar to Christ there are 45 Egyptian years, 12 days, in
which the computations for uniform and apparent time are in agreement.

The motions corresponding to these differences of time are subtracted, each
in its own category, from the places for Christ. For noon on the 1st day of the
month Hecatombaeon of the 1st Olympiad, we shall have the moon’s uniform
distance from the sun as 39°48’, and the anomaly as 46° 20"; for Alexander’s era,
at noon on the first day of the month Thoth, the moon’s distance from the sun
as 310° 44, and the anomaly as 85° 41'; for Julius Caesar’s era, at midnight before
1 January, the moon’s distance from the sun as 350° 39’, and the anomaly as 17°
58". All these values [are reduced] to the meridian of Cracow. For Gynopolis,
which is commonly called Frombork, where I generally made my observations,
is located at the mouths of the Vistula River and lies on the meridian of Cra-
cow, as I learn from lunar and solar eclipses observed simultaneously in both
places. Macedonia’s Dyrrhachium, which was called Epidamnus in antiquity, is

also located on this meridian.

The moon’s second inequality, and the ratio of the first epicycle to the
second. Chapter 8.

Thus the moon’s uniform motions together with its first inequality have been
explained. Now I must investigate the ratio of the first epicycle to the second,
and of both to their distance from the center of the earth. The greatest inequal-
ity [between the moon’s mean and apparent motions] is found, as I said, half-
way [between the higher apse and the lower] at the quadratures, when the

waxing or waning moon is at the half. This inequality attains 7%5°,
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as reported also by the ancients [Ptolemy, Syn-
taxis, V, 3]. For they observed the time when
the half moon approached most closely to the
epicycle’s mean distance. This [occurred] near
the tangent drawn from the center of the earth,
as could easily be perceived through the com-
putation explained above. Since the moon was
then about 9o° of the ecliptic from its rising or
setting, they avoided the error which could be
produced in the longitudinal motion by paral-
lax. For at that time the circle passing through
the horizon’s zenith intersects the ecliptic at
right angles, and permits no variation in longi-

tude, but the variation occurs entirely in lati-

tude. Therefore they determined the moon’s dis-
tance from the sun with the help of an instru-
ment, the astrolabe. After the comparison was
made, the moon was found to vary from its uni-

form motion by 7%°, as I said, instead of 5°.

Now draw epicycle AB, with center C. From

D

D, the center of the earth, draw the straight line
DBCA. Let the epicycle’s apogee be A, and its perigee B. Draw DE tangent to
the epicycle, and join CE. At the tangent there is the greatest prosthaphaeresis.
In this case let it be 7° 40" = angle BDE. CED is a right angle, being at the point
of tangency with the circle AB. Therefore CE will be 1,334 units, of which radius
CD = 10,000. But at full and new moon this distance was much smaller, since it
was about 861 of the same units. Divide CE, letting CF = 860 units. Around the
same center, F will [mark] the circumference which was traced by the new and
full moon. Therefore the remainder FE = 474 units will be the diameter of the
second epicycle. Bisect FE at its midpoint G. The whole line CFG = 1,097 units
is the radius of the circle described by the center of the second epicycle. Hence
the ratio CG:GE = 1,097:237 in units of which CD = 10,000.

The remaining variation, in which the moon is seen moving nonuniformly
away from the [first] epicycle’s higher apse. Chapter 9.
The foregoing demonstration also permits us to understand how the moon

moves nonuniformly on its first epicycle, the greatest inequality occurring when
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it is crescent or gibbous as well as half full. Once
more let AB be the first epicycle, described by the
mean motion of the second epicycle’s center. Let the
first epicycle’s center be C, its higher apse A, and its
lower apse B. Take point E anywhere on the circum-
terence, and join CE. Let CE:EF = 1,097:237. With

E as center, and radius EF, describe the second epi-

cycle. Draw straight lines CL and CM tangent to it
on both sides. Let the epicyclet move from A to E,
that is, westward in the upper circumference [of the
first epicycle]. Let the moon move from F to L, also
westward. The motion AE being uniform, the sec-
ond epicycle’s motion through FL clearly adds arc
FL to the uniform motion, and subtracts therefrom
when it passes through MF. In triangle CEL, L is a
right angle. EL = 237 units, of which CE =1,097. In
units of which CE = 10,000, EL = 2,160. It subtends
angle ECL which, according to the Table, = 12°28" =
angle MCE, since the triangles [ECL and ECM]

are similar and equal. This is the greatest inequality

of the moon’s departure from the higher apse of the first epicycle. This happens
when the moon in its mean motion deviates by 38° 46" to either side of the line
of the earth’s mean motion. Thus these greatest prosthaphaereses quite clearly
occur when the moon is at the mean distance of 38° 46" from the sun and is at

the same distance to either side of the mean opposition.

How the moon’s apparent motion is derived from the given uniform
motions. Chapter 10.
Having so disposed of all these topics, I now wish to show by way of a diagram
how those uniform motions of the moon yield the apparent motion equal to
the given uniform motions. I choose an example from Hipparchus’ observa-
tions, by which at the same time the theory may be confirmed by experience
[Ptolemy, Synzaxis, V, 5].

In the 197th year after the death of Alexander, on the 17th day of Pauni,
which is the roth Egyptian month, at 9% hours of the day, Hipparchus in Rhodes,
observing the sun and moon with an astrolabe, found them 48%0° apart, with

the moon following the sun. He thought that the sun’s place was 10%0° within
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the Crab, and therefore the moon was at 29° within the Lion. At that time 29°
within the Scorpion was rising, and 10° within the Virgin was culminating in
Rhodes, where the elevation of the north pole is 36° [Ptolemy, Synzaxis, 11, 2].
From this situation it was clear that the moon, located about 9o° of the ecliptic
from the horizon, at that time underwent no parallax in longitude or at any rate
an imperceptible parallax. This observation was performed on that 17th day in
the afternoon, at 3% hours = 4 uniform hours at Rhodes. This would have been
3% uniform hours at Cracow, since Rhodes is % of an hour nearer to us than
Alexandria is. From the death of Alexander there were 196 years, 286 days, plus
3% simple hours, but about 3% equal hours. At that time the sun in its mean
motion reached 12°3" within the Crab, but in its apparent motion 10° 40" within
the Crab. Hence it is evident that the moon really was at 28° 37" within the
Lion. The moon’s uniform motion in its monthly revolution was 45° 5, and in
anomaly away from the higher apse 333° according to my calculation.

With this example before us, let us draw the first epicycle AB, with its center

A
I

= 333% Join CE, and divide it at F, so that EF = 237units, [ '.I Nule

of which EC = 1,097. With E as center, and radius EF, l I‘-. \ \
|
|
1

at C. Extend its diameter ACB in a straight line ABD
to the center of the earth. On the epicycle take arc ABE

e

describe epicyclepicyclet FG. Let the moon be at point | \\

G, with arc FG = 9o° 10" = twice the uniform motion | §
away from the sun = 45°5". Join CG, EG, and DG.In } |
triangle CEG two sides are given, CE = 1,097,and EG | I|

= EF = 237, with angle GEC = 90°10". Hence, in accord- [ \
ance with the theorems on Plane Triangles, the remain-
ing side CG is given = 1,123 of the same units, and so is
angle ECG = 12° ir". This makes clear also arc EI and
the anomaly’s additive prosthaphaeresis, with the whole
of ABEI = 345°11". The remaining angle GCA = 14° 49’
= the moon’s true distance from the higher apse of epi-
cycle AB, and angle BCG = 165°11". Consequently, also
in triangle GDC two sides are given, GC = 1,123 units,
of which CD = 10,000, as well as angle GCD =165°1r".
From them we obtain also angle CDG = 1°29" and the

prosthaphaeresis, which was added to the moon’s mean motion. As a result the

moonss true distance from the sun’s mean motion = 46°34’, and the moon’s appar-
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ent place at 28° 37 within the Lion differed from the sun’s true place by 47°57" =9’
less than in Hipparchus’ observation.

However, let nobody for this reason suspect that either his investigation or
my computation was faulty. Although there is a slight discrepancy, I shall nev-
ertheless show that neither he nor I committed an error, and that this is how
things really were. For let us remember that the circle traversed by the moon is
tilted. Then we shall also admit that in the ecliptic it produces some inequality
in longitude, especially near the regions which lie midway between both limits,
the northern and the southern, and both nodes. This situation is very much like

the obliquity

of the ecliptic and equator, as I explained in connection with the nonuniformity
of the natural day [III, 26]. So also, if we transfer these ratios to the lunar circle,
which Ptolemy asserted is inclined to the ecliptic [Synzaxis, V, 5], we shall find
that in those places these ratios make a difference on the ecliptic of 7" in longi-
tude, which when doubled = 14". This occurs as an addition and a subtraction in
like manner. For, since the sun and moon are a quadrant apart, if the northern
or southern limit of latitude is midway between them, then the arc intercepted
on the ecliptic is 14" larger than a quadrant of the moon’s circle. On the con-
trary, in the other quadrant, in which the nodes are the midpoints, the circles
through the poles of the ecliptic intercept the same quantity less than a quad-
rant. This is the situation in the present case. The moon was about halfway
between the southern limit and its ascending intersection with the ecliptic (the
intersection which the moderns call the “head of the Dragon”). The sun had
already passed the other intersection, the descending one (which the moderns
call the “tail [of the Dragon]”). There is no wonder, therefore, if that lunar
distance of 47° 57" on its tilted circle increased at least 7” when related to the
ecliptic, apart from the fact that the sun, in approaching its setting, also con-
tributed some subtractive parallax. These topics will be discussed more fully in
the explanation of the parallaxes [IV, 16]. Thus that distance of 48° 6 between
the luminaries, which Hipparchus had obtained instrumentally, accords with

my computation with remarkable closeness and, as it were, by agreement.

Tabular presentation of the lunar prosthaphaereses or
normalizations. Chapter 11.
The method of computing the lunar motions, I believe, is understood in gen-

eral from the present example. In triangle CEG two sides, GE and CE, always

227 Nicolaus Copernicus. De Revolutionibus Orbium Ceelestium, Libri VI. Nuremberg, 1543. THE WARNOCK LIBRARY

page 112v




remain the same. Through angle GEC, which constantly changes, but never-
theless is given, we obtain the remaining side GC, together with angle ECG,
which is the prosthaphaeresis for normalizing the anomaly. Secondly, when
two sides, DC and CG, in triangle CDG, as well as angle DCE are determined
numerically, by the same procedure angle D at the center of the earth becomes
known [as the difference] between the uniform and the true motions.

In order to make this information even handier,

I shall construct a table of the prosthaphaereses in six columns. After two [col-

umns containing the] common numbers of the deferent, the third column will

show the prosthaphaereses which arise from the
epicyclet’s twice-monthly rotation and vary the uniform-
ity of the first anomaly. Then, leaving the next column
temporarily vacant to receive numbers later, I shall con-

cern myself with the fifth column. In it I shall enter the

first and larger epicycle’s prosthaphaereses which occur
at mean conjunctions and oppositions of the sun and
moon. The biggest of these prosthaphaereses is 4° 56".
In the next to the last column are placed the numbers
by which the prosthaphaereses occurring at half moon
exceed the prosthaphaereses in column 4. Of these num-
bers, the largest is 2° 44’. For the purpose of ascertain-
ing the other numbers in excess, the proportional min-
utes have been worked out according to the following
ratio. [The maximum number in excess] 2° 44" was
treated as 60" in relation to any other excess occurring
at the epicyclet’s point of tangency [with the line drawn
from the center of the earth]. Thus, in the same exam-
ple [IV, 10], we had line CG = 1,123 units of which CD

= 10,000. This makes the largest prosthaphaeresis at the

epicyclet’s point of tangency 6° 29, exceeding that first maximum by 1°33". But 2°
44°1° 33" = 60" 34 . Therefore we have the ratio of the excess occurring in the
epicyclet’s semicircle to the excess caused by the given arc of 9o°10". Accordingly,
opposite 9o° in the Table, I shall write 34". In this way for every arc of the same
circle entered in the Table we shall find the proportional minutes, which are to be
recorded in the vacant fourth column. Finally, in the last column I added the

northern and southern degrees of latitude, which I shall discuss below [1V, 13-14].
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For, the convenience of the procedure and practice with it convinced me to pre-

serve this ar rangement.

Table of the Moon’s Prosthaphaereses page 113v
Second First
Epicycle’s Propor- Epicycle’s
Common Prostha- tional Prostha- Northern
Numbers phaeresis Minutes phaeresis Increases Latitude

3 | 357 o | 51 o o | 14 o 7 4 159
6 | 354 1 | 40 o o | 28 o | 14 4 | 58
9 | 351 2 | 28 I o | 43 o | 2t 4 | 56
12 | 348 3155 I o | 57 o | 28 4 | 53
15 | 345 4 I 2 I I o |35 4 | 50
18 | 342 4 | 47 3 1| 24 o | 43 4 | 45
21 | 339 5 | 31 3 r | 38 o |50 4 | 40
24 | 336 6 | 13 4 I | 51 o | 56 4 | 34
27 | 333 6 | 54 5 2 |5 I | 4 4 | 27
30 | 330 7 | 34 5 2 | 17 I 2 4 | 20
33 | 327 8 | 10 6 2 | 30 I 18 4 | 12
36 | 324 8 | 44 7 2 | 42 |25 4 |3

39 | 321 9 | 16 8 2 | 54 I |30 3 |53
42 | 318 9 | 47 10 3 16 |37 3| 43
45 | 315 0 | 14 11 3 | 17 I | 42 3 | 32
48 | 312 10 | 30 12 3 27 I 48 3 20
5I | 309 II o 13 3 38 I 52 3 8

54 | 306 | oar 15 3 | 47 |57 2 | 56
57 | 303 m | 38 16 3 | 56 2 2 2 | 44
60 | 300 I | 50 18 4 5 2 6 2 | 30
63 | 297 12 2 19 4 | 3 2 | 10 2 | 16
66 | 294 2 | 12 21 4 | 20 2 15 2 2

69 | 291 12 | 18 22 4 27 2 18 I 47
72 | 288 2 | 23 24 4 | 33 2 2I I 33
75 | 285 2 | 27 25 4 | 39 2 25 I 18
78 | 282 2 | 28 27 4 | 43 2 | 28 I 2

8r | 279 2 | 26 28 4 | 47 2 | 30 o | 47
84 | 276 2 | 23 30 4 | 51 2 | 34 o | 31
87 | 273 |17 32 4 |53 2 137 o | 16
90 | 270 | 2 34 4 | 55 2 | 40 o o
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Table of the Moon’s Prosthaphaereses
Second First
Epicycle’s Propor- Epicycle’s

Common Prostha- tional Prostha- Southern
Numbers phaeresis Minutes phaeresis Increases Latitude
93 | 267 2 | 3 35 4 | 56 2 | 42 o | 16
96 | 264 |53 37 4 | 56 2 | 42 o |3
99 | 261 | 41 38 4|55 2 | 43 o | 47
102 | 258 o | 27 39 4 | 54 2 | 43 I 2
105 | 255 I | 10 41 4 | st 2 | 44 1 | 18
108 | 252 0 | 52 42 4 | 48 2 | 44 I 33
I | 249 0 | 35 43 4 | 44 2 | 43 1| 47
114 | 246 10 | 17 45 4 | 39 2 | 41 2 2
17 | 243 9 | 57 46 4 | 34 2 | 38 2 | 16
120 | 240 9 | 35 47 4 |27 2 | 35 2 | 30
123 | 237 9 | 13 48 4 | 20 2 | 31 2 | 44
126 | 234 8 | 50 49 4 | 11 2 | 27 2 | 56
129 | 231 8 | 25 50 4 2 2 | 22 3 9
132 | 228 7 | 59 5I 3 53 2 18 3 21
135 | 225 7 |3 52 3 | 42 2 | 3 3 |32
138 | 222 707 53 3 | 31 2 | 8 3|43
141 | 219 6 | 38 54 3 | 19 2 |1 3|33
144 | 216 6 | 9 35 307 I |53 4 |3
147 | 213 5 | 40 56 2 | 53 1 | 46 4 | 12
150 | 210 5 I 57 2 | 40 I |37 4 | 20
153 | 207 4 | 42 57 2 | 25 1 | 28 4 | 27
156 | 204 4 | 1 58 2 | 10 1 | 20 4 | 34
159 | 201 3 41 58 I 55 I 12 4 | 40
162 | 198 3 | 10 59 1|39 1|4 4 | 45
165 | 195 2 |39 59 1| 23 o |53 4 |50
168 | 192 2 |7 59 |7 o | 43 4 |53
171 | 189 1 | 36 60 o | s o | 33 4 | 56
174 | 186 I 4 60 o | 34 o | 22 4 | 58
177 | 183 o | 32 60 o | 17 o | 1 4 |59
180 | 180 o o 60 o o o o 5 o

Computing the moon’s motion. Chapter 12.

The method of computing the apparent lunar [motion] is clear from the fore-
going demonstrations, and is as follows. The proposed time for which we seek
the moon’s place will be reduced to uniform time. Through it, just as we did in
the case of the sun [III, 25], we shall derive the mean motions in longitude,
anomaly, and also latitude, which I shall soon explain [IV, 13], from the given
epoch of Christ or any other. We shall establish the place of each motion at the
proposed time. Then, in the Table we shall look up the moon’s uniform elonga-

tion or twice its distance from the sun. We shall note the appropriate
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prosthaphaeresis in column 3, and the accompanying proportional minutes. If
the number with which we started is found in column 1 or is less than 180°, we
shall add the prosthaphaeresis to the lunar anomaly. But if that number is greater
than 180° or is in column 2, the prosthaphaeresis will be subtracted from the
anomaly. Thus we shall obtain the normalized anomaly of the moon, and its
true distance from the [first epicycle’s] higher apse. With this we shall consult
the Table again and take the prosthaphaeresis in column 5 corresponding to it,
as well as the excess which follows in column 6. This excess is added by the
second epicycle to the first. Its proportional part, computed from the ratio of
the minutes found to 6o [minutes], is always added to this prosthaphaeresis.
The sum thus obtained is subtracted from the mean motion in longitude and
latitude, provided that the normalized anomaly is less than 180° or a semicircle,
and it is added if the anomaly is greater [than 180°]. In this way we shall obtain
the moon’s true distance from the sun’s mean place, and its normalized motion
in latitude. There will therefore be no uncertainty about the moon’s true dis-
tance either from the first star in the Ram through the sun’s simple motion, or
from the vernal equinox through its composite motion, affected by the preces-
sion of the equinox. Finally, through the normalized motion in latitude in the
Table’s seventh and last column we shall have the degrees of latitude by which
the moon has deviated from the ecliptic. This latitude will be northern when

the motion in longitude is found in the first part of the Table,

that 1s, if it is less than 9o° or greater than 270°. Otherwise its latitude will be
southern. Up to 180°, therefore, the moon will descend from the north, and
then ascend from its southern limit until it has completed the remaining de-
grees of the circle. To that extent the moon’s apparent motion in a certain way
has as many functions connected with the earth’s center as the earth’s center has

with the sun.

How the moon’s motion in latitude is analyzed and

demonstrated. Chapter 13.

Now I must give an account also of the moon’s motion in latitude, which seems
harder to find because more circumstances block the way. For, as I said before
[IV, 4], suppose that two lunar eclipses are similar and equal in all respects; that
is, the darkened areas occupy the same northern or southern position; the moon
is near the same ascending or descending node; and its distance from the earth

or from the higher apse is equal. If these two eclipses so agree, the moon is
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known to have completed whole circles of latitude in its true motion. For, the
earth’s shadow is conical. If a right cone is cut by a plane parallel to its base, the
section is a circle. This is smaller at a greater distance from the base, and greater
at a smaller distance from the base, and accordingly equal at an equal distance.
Thus, at equal distances from the earth, the moon passes through equal circles
of the shadow, and presents equal disks of itself to our sight. As a result, when
it displays equal parts on the same side at equal distances from the center of the
shadow, it informs us that the latitudes are equal. From this it necessarily fol-
lows that the moon has returned to an earlier place in latitude, and that its
distances from the same node are also equal at those times, especially if the
place of both bodies likewise agrees. For, an approach and withdrawal of the

moon or of the earth change the whole size of the shadow.

Yet the change is slight and barely ascertainable. Therefore, as was said with
regard to the sun [III, 20], the longer the interval that has elapsed between the
two eclipses, the more precisely will we be able to obtain the moon’s motion in
latitude. But two eclipses agreeing in these respects are rarely found (I for one
have not encountered any thus far).

Nevertheless, I am aware that there is also another method by which this
can be done. For suppose that while the other conditions remain, the moon is
eclipsed on opposite sides and near opposite nodes. This will indicate that in
the second eclipse the moon reached the place diametrically opposite the place
of the first eclipse, and described a semicircle in addition to whole circles. This
would seem to be satisfactory for the investigation of this topic. Accordingly, I
have found two eclipses related to each other almost exactly in this way.

The first one occurred in the 7th year of Ptolemy Philometor = 150th year
after Alexander, in Phamenoth, the 7th Egyptian month, after the 27th day,
during the night followed by the 28th, as Claudius [Ptolemy] says [Synzaxis,
VI, 5]. The moon was eclipsed from the beginning of the 8th hour until the end
of the 1oth hour, in seasonal hours of the night at Alexandria. The eclipse, near
the descending node, at its greatest extent darkened 72ths of the moon’s diam-
eter from the north. The midtime of the eclipse, therefore, was 2 seasonal hours
(according to Ptolemy) after midnight = 2% uniform hours, since the sun was
at 6° within the Bull. At Cracow it would have been 1%5 hours [uniform time].

I observed the second eclipse on that same meridian of Cracow on 2 June
1509 A.D., when the sun was at 21° within the Twins. The eclipse’s midtime was

11% uniform hours after noon of that day. About %2ths of the moon’s diameter on
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its southern side were darkened. The eclipse occurred near the ascending node.
From the beginning of Alexander’s era, therefore, [until the first eclipse] there
are 149 Egyptian years, 206 days, plus 14%5 hours at Alexandria. At Cracow, how-
ever, there would have been 13% hours, local time, but 13% hours, uniform time.
At that moment the uniform place of the anomaly, according to my computation
in almost exact agreement with Ptolemy’s, was 163° 33, and the prosthaphaeresis
was 1°23’, by which the moon’s true place was less than its uniform [place]. From

the same established epoch of Alexander to the second eclipse

there are 1,832 Egyptian years, 295 days, plus 11 hours, 45 minutes, apparent time =

11 hours, 55 minutes, uniform time. Hence the moon’s uniform motion was 182°

18’; the place of the anomaly = 159° 55" = 161°13°, normalized; the prosthaphaeresis,
by which the uniform motion was less than the apparent, was 1° 44".

In both eclipses, therefore, the moon was clearly at an equal distance from
the earth, and the sun was nearly at its apogee in both cases, but there was a
difference of one digit between the darkened areas. The moon’s diameter usu-
ally occupies about %°, as I shall show later on [IV, 18]. One digit = %12th of the
diameter = 2%’ corresponding to about %° on the moon’s tilted circle near the
nodes. In the second eclipse the moon was %2° farther away from the ascending
node than from the descending node in the first eclipse. Hence, the moon’s
true motion in latitude after complete revolutions quite evidently was 179%2°.
But between the first and second eclipse the lunar anomaly added to the uni-
form motion 21, by which one prosthaphaeresis exceeds the other. We shall
therefore have the moon’s uniform motion in latitude as 179° 51" after complete
circles. The interval between the two eclipses was 1,683 years, 88 days, 22 hours,
25 minutes, apparent time, in agreement with uniform time. In this period,
after 22,577 uniform revolutions were completed, there are 179° 51’, in agree-

ment with the value which I just mentioned.

The places of the moon’s anomaly in latitude. Chapter 14.

In order to determine the places of this motion too at the previously accepted
epochs, here also I have taken two lunar eclipses. These occurred, not at the
same node nor, as in the previous instances [IV, 13], in diametrically opposite

regions, but in the same region, northern or southern (all the other

conditions being met, as I said). By following Ptolemy’s procedure [Synzaxis,

IV, 9], with these eclipses we shall attain our goal without error.
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The first eclipse, which I used for investigating other lunar motions also
[IV, 5], was the one which I said was observed by Claudius Ptolemy in Hadri-
an’s year 19, toward the end of the 2nd day of the month Choiach, one uniform
hour before the midnight which was followed by the 3rd day at Alexandria. At
Cracow it would have been 2 hours before midnight. At mid-eclipse % of the
diameter = 10 digits were darkened in the north. The sun was at 25° 10" within
the Balance. The place of the moon’s anomaly was 64° 38, and its subtractive
prosthaphaeresis was 4° 20". The eclipse occurred near the descending node.

I observed the second eclipse, also with great care, at Rome on 6 November
1500 A.D., two hours after the midnight which initiated 6 November. At Cra-
cow, which lies 5° to the east, it was 2% hours after midnight. The sun was at 23°
16" within the Scorpion. Once again, ten digits in the north were darkened.
From the death of Alexander there is a total of 1,824 Egyptian years, 84 days,

plus 14 hours, 20 minutes, apparent time, but 14 hours, 16 minutes, uniform

time. The moon’s mean motion was at 174° 14’; the lunar anomaly was at 294°

44, normalized at 291° 35". The additive prosthaphaeresis was 4° 28".

Also in these two eclipses, clearly, the moon’s distances from the higher
apse were almost equal. In both cases the sun was near its middle apse, and the
size of the shadows was equal. These facts indicate that the moon’s latitude was
southern and equal, and therefore the moon’s distances from the nodes were
equal, in the latter case ascending, but in the former case descending. Between
the two eclipses there are 1,366 Egyptian years, 358 days, plus 4 hours, 20 min-
utes, apparent time, but 4 hours, 24 minutes, uniform time, during which the
mean motion in latitude is 159° 55"

Now in the moon’s tilted circle let the diameter AB be the intersection with

the ecliptic. Let C be the northern limit, and D the southern;

A the descending node, and B the ascending node. In the southern region take
two equal arcs, AF and BE, for the first eclipse at point F, and the second at
point E. Furthermore, let FK be the subtractive prosthaphaeresis at the first

eclipse, and EL the additive prosthaphaeresis at
the second. Arc KL = 159° 55". To it add FK = 4°
20 and EL = 4°28". The whole arc FKLE = 168°
43’, and the rest of the semicircle = 11° 17°. Half
of this = 5°39" = AF = BE, the moon’s true dis-
tances from the nodes A and B, and therefore

AFK =9°59". Hence it is also clear that CAFK
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= the distance of the latitude’s mean place from the northern limit = 99° 59".
From the death of Alexander to the time of this observation by Ptolemy in this
place there are 457 Egyptian years, 91 days, plus 10 hours by apparent time, but
9 hours, 54 minutes, by uniform time. In this interval the mean motion in lati-
tude is 50°59". When this figure is subtracted from 99° 59, the remainder is 49°
for noon on the first day of Thoth, the first Egyptian month, at the epoch of
Alexander, but on the meridian of Cracow.

Hence, the places of the moon’s motion in latitude, starting from the northern
limit, which I took as the origin of the motion, are given for all the other ep-
ochs according to the differences in the intervals. From the st Olympiad to the
death of Alexander there are 451 Egyptian years, 247 days, from which 7 min-
utes are subtracted to normalize the time. In this period the motion in latitude
= 136° 57". Furthermore, from the 1st Olympiad to Caesar there are 730 Egyp-
tian years, 12 hours, to which 1o minutes are added to normalize the time. In
this period the uniform motion = 206° 53". From then to Christ there are 45
years, 12 days. From 49° subtract 136° 57" by supplying the 360° of a circle; the
remainder = 272° 3" for noon on the first day of the month Hecatombaeon [in
the first year] of the first Olympiad. Again, to this figure add 206° 53’; the sum
= 118° 56" for the midnight preceding 1 January

of the Julian epoch. Finally, add 10° 49; the sum = 129° 45, the place for the
Christian epoch, likewise at midnight preceding 1 January.

The construction of the parallactic instrument. Chapter 15.

The moon’s greatest latitude, corresponding to the angle of intersection be-
tween its circle and the ecliptic, = 5°, with the circle = 360°. An opportunity to
make this observation was not vouchsafed by fate to me, hampered by lunar
parallaxes, as it was to Claudius Ptolemy. For at Alexandria, where the north
pole’s elevation = 30° 58’, he focused on the moon’s imminent closest approach
to the zenith, that is, when it was at the beginning of the Crab and at its north-
ern limit, which he was able to determine numerically in advance [ Synzaxis, V,
12]. With the help of a certain device, which he calls the “parallactic instru-
ment,” constructed for the purpose of determining the moon’s parallaxes, at
that time he found its minimum distance from the zenith to be only 2%°. Had
this distance been affected by any parallax, this would necessarily have been
quite small for so short a distance. Then, subtracting 2%° from 30° 58 leaves a

remainder of 28° 50%2". This figure exceeds the greatest obliquity of the ecliptic
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(which was then 23° 51" 20”) by about 5 whole degrees. This lunar latitude,
finally, is found to agree with the other details up to the present.

The parallactic instrument consists of three rulers. Two of them are of equal
length, at least 4 cubits, while the third is somewhat larger. This [longer ruler]
and one of the two shorter rulers are joined to either end of the third ruler by
pins or pegs so fitted in careful perforations that while the rulers can move in
the same plane, they do not wobble at all in those joints. From the center of the
joint of the longer ruler produce a straight line down its entire length. On this
straight line measure a segment as exactly as possible equal to the distance
between the joints. Divide this segment into 1,000 equal units, or more, if pos-

sible. With the same units continue this division on the rest

of the ruler until you reach 1,414 units. These constitute the side of the square
inscribed in a circle whose radius = 1,000 units. The rest of this ruler may be cut
off as superfluous. From the center of the joint on the other ruler also draw a
line equal to those 1,000 units, or to the distance between the centers of the
joints. To a side of this ruler attach eyepieces through which sight passes, as is
customary with the dioptra. Arrange these eyepieces so that the lines of sight
do not deviate at all from the line already drawn along the ruler, but are equally
distant from it. Be sure also that when this line is moved toward the longer
ruler, its end can touch the graduated line. In this way the rulers form an isos-
celes triangle, whose base will be in the units of the graduated line. Then a very
well squared and polished pole is erected and made firm. To the pole fasten the
ruler with the two joints by means of hinges, on which the instrument can
rotate like a door. But the straight line passing through the centers of the ruler’s
joints is always vertical and, as though it were the axis of the horizon, points
toward the zenith. Therefore, when you are looking for a star’s distance from
the zenith, keep the star in view along a straight line through the ruler’s eye-
pieces. By placing the ruler with the graduated line underneath, you will find
out how many units, of which the diameter of a circle = 20,000, subtend the
angle between [the line of ] sight and the axis of the horizon. From the Table
[of Lines Subtended] you will obtain the desired arc of the great circle between
the star and the zenith.

How the lunar parallaxes are obtained. ~Chapter 16.
With this instrument, as I said [IV, 15], Ptolemy learned that the moon’s great-

est latitude = 5° Then, turning his attention to ascertaining its parallax, he says
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[Syntaxis, V, 13] that he found this at Alexandria to be 1°7’; the sun was at 5°28’
within the Balance; the moon’s mean distance from the sun = 78° 13’; the uni-
form anomaly = 262° 20"; the motion in latitude = 354° 40" the additive

prosthaphaeresis = 7° 26"

therefore the moon’s place was 3° 9" within the Goat; the normalized motion in
latitude = 2° 6; the moon’s northern latitude = 4° 59'; its declination from the
equator = 23° 49; and the latitude of Alexandria = 30°58". Near the meridian, he
says, the moon was seen through the instrument at 50° 55" from the zenith, that
is, 1° 7" more than required by computation. With this information, in accord-
ance with the ancients’ theory of an eccentrepicycle, he shows that the moon’s
distance from the center of the earth at that time was 39 units, 45 minutes, with
the radius of the earth = 1 unit. Then he demonstrates what follows from the
ratio of the circles. For instance, the moon’s greatest distance from the earth
(which they say occurs at new and full moon in the apogee of the epicycle) is 64
units plus 10 minutes = %th of a unit. But the moon’s least distance [from the
earth] (which occurs at the quadratures), when the half moon is in the perigee
of the epicycle, is only 33 units, 33 minutes. Hence he also evaluated the paral-
laxes which occur about 9o° from the zenith: the smallest = 53" 34", but the
largest = 1° 43" (as may be seen more fully from what he deduced therefrom).

But now to those who wish to consider the matter, it is clear that the situ-
ation is quite different, as I have frequently found. Nevertheless I shall review
two observations which again establish that my lunar theory is more precise
than theirs to the extent that it is found to agree better with the phenomena
and to leave no residue of doubt.

On 27 September 1522 A.D., 5% uniform hours after noon, about sunset at
Frombork through the parallactic instrument I caught the center of the moon
on the meridian, and found its distance from the zenith = 82° 50". From the
beginning of the Christian era to this moment there were 1,522 Egyptian years,
284 days, plus 17%3 hours by apparent time, but 17 hours, 24 minutes by uniform
time. Therefore the apparent place of the sun was computed to be 13° 29" within

the Balance; the moon’s uniform distance from the sun = 87° 6°; the uniform
anomaly = 357°39;

the true anomaly = 358° 40°; and the additive [prosthaphaeresis] = 7. Thus the
moon’s true place = 12° 33" within the Goat. The mean motion in latitude from

the northern limit = 197° 1; the true motion in latitude = 197° 87 the moon’s

237 Nicolaus Copernicus. De Revolutionibus Orbium Ceelestium, Libri VI. Nuremberg, 1543. THE WARNOCK LIBRARY

page 118v

page 119r




southern latitude = 4° 47; the declination from the equator = 27° 417; and the
latitude of my place of observation = 54° 19". When this is added to the lunar
declination, it makes the [moon’s] true distance from the zenith = 82° There-
fore the remaining 50° were the parallax, which should have been 1° 17" accord-
ing to Ptolemy’s doctrine.

Moreover, I made another observation in the same place at 6 P. M. on 7
August 1524 A.D., and through the same instrument I saw the moon at 81° 55’
from the zenith. From the beginning of the Christian era until this hour there
were 1,524 Egyptian years, 234 days, 18 hours [by apparent time], and 18 hours
by uniform time also. The sun’s place was computed to be 24° 14" within the
Lion; the moon’s mean distance from the sun = 97° 5’; the uniform anomaly =
242°10; the corrected anomaly = 239° 40°, adding about 7° to the mean motion.
Therefore the moon’s true place = 9°39” within the Archer; the mean motion in
latitude = 193° 19°; the true [motion in latitude] = 200° 17';the moon’s southern
latitude = 4° 41; and its southern declination = 26° 36". When this is added to
the latitude of the place of the observation = 54° 19’, the sum = the moon’s
distance from the pole of the horizon = 80° 55°. But it appeared to be 81° 55".
Therefore the surplus of 1° was transferred to the lunar parallax which, accord-
ing to Ptolemy and the ideas of my predecessors, should have been 1° 38’, a

calculation required by consistency with the implications of their theory.

A demonstration of the moon’s distances from the earth, and of their ratio in
units of which the earth’s radius equals one. Chapter 17.

From the foregoing information the size of the moon’s distance from the earth
will now be clear. Without this distance a definite value cannot be attached to

the parallaxes, since these two quantities are related to each other. The distance

will be determined as follows. Let AB be a great
circle of the earth, with its center at C. Around C
describe another circle DE, in comparison with
which the size of the earth’s is significant. Let D be | |
the pole of the horizon. Put the center of the moon - /

at E, where DE, its distance from the zenith, is =

known. In the first observation [of IV, 16] angle
DAE = 82° 50; ACE was computed to be only 82°% and AEC, the difference
between them = 50° = the parallax. Accordingly we have triangle ACE with its

angles given, and therefore its sides are given. For, since angle CAE is given,

side CE = 99,219 units, of which the diameter of the circle circumscribed around
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triangle AEC = 100,000. In such units AC = 1,454 0 %s CE, of which the
earth’s radius AC = 1. This was the moon’s distance from the earth’s center in
the first observation.

But in the second [observation of IV, 16] the apparent angle DAE = 81°55’; the
computed angle ACE = 80°55"; and the difference, angle AEC = 60". Therefore side
EC = 99,027 units,and AC = 1,891 units, of which the diameter of the circle circum-
scribed around the triangle = 100,000. Thus CE, the moon’s distance [from the
earth’s center| = 56 units, 42 minutes, of which the earth’s radius AC = 1.

Now let the moon’s greater epicycle be ABC, with center D. Take E as the
earth’s center, from which draw the straight line EBDA as far as the apogee A,
while the perigee is at B. Measure arc ABC = 242° 10" in accordance with the
computed uniform lunar anomaly [in Copernicus’ 2nd observation in IV, 16]. With
center C, describe the second epicycle FGK. On it let arc FGK = 194° 10" = twice

the moon’s distance from the sun. Join DK, which subtracts 2°27" from the anomaly,

leaving KDB = the angle of the normalized anomaly = 59° 43". The whole angle
CDB = 62°10’, being the excess over a semicircle. Angle BEK = 7° In triangle

KDE, therefore, the angles are given in degrees of T
which 180° = 2 right angles. The ratio of the sides is
also given: DE = 91,856 units, and EK = 86,354 units,

of which the diameter of the circle circumscribing // =
. . . . Vo
triangle KDE = 100,000. But in units of which DE = g
\
100,000, KE = g4,010. It was shown above, however, |&%z="~~_

that DF = 8,600 units, and the whole line DFG =
13,340 units. In this given ratio, as was demonstrated
[above in IV, 17], EK = §64%o0 units, of which the earth’s
radius = 1 unit. It therefore follows that in the same
units DE = 601%0, DF = 51%%0, DFG = 8%o, and like-
wise the whole of EDG, if it were extended in a

straight line = 68%5 units = the greatest height of the
half moon. Subtracting DG from ED leaves a remain-
der of 521%o as the half moon’s smallest distance [from
the earth]. So also the whole of EDF, the height oc- |
curring at full and new moon = 65%2 units at its maxi- f

mum, and at its minimum = §5%o units, after DF has

been subtracted. We should not be disturbed because

-
L:i8

the greatest distance of the full and new moon [from
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the earth] is thought to be 64'%o units by others [IV, 16], especially by those
who could become only partially familiar with the lunar parallaxes on account
of the location of their residences. I have been permitted to understand them
more completely by the moon’s closer proximity to the horizon, near which its
parallaxes reach their full value, as is clear. Yet I have found that the parallaxes

vary by no more than 1" on account of this difference.

The diameter of the moon and of the earth’s shadow at the place where the
moon passes through it. Chapter 18.

Since the apparent diameters of the moon and of the shadow also vary with the
moon’s distance from the earth, a discussion of these topics too is important. To
be sure, the diameters of the sun and moon are measured correctly by Hipparchus’
dioptra. Nevertheless, this is done much more accurately in the case of the
moon, it is believed, through some special lunar eclipses in which the moon is
equally distant from its higher or lower apse. This is especially true if at those
times the sun too is similarly situated, so that the circle of shadow through
which the moon passes on both occasions is found equal, except that the dark-
ened areas occupy unequal regions. Obviously, when the areas in shadow, and
the lunar latitudes, are compared with each other, the difference shows how
great an arc around the earth’s center is subtended by the moon’s diameter.
When this is known, the radius of the shadow is also obtained quickly, as will
be made clearer by an example.

Thus, suppose that at the middle of an earlier eclipse 3 digits or twelfths of
the lunar diameter were darkened while the moon’s latitude was 47" 54", whereas
in a second eclipse 10 digits [were darkened] when the latitude was 29" 37”. The
difference between the darkened areas is 7 digits, and between the latitudes is
18'17”, as compared with the proportion of 12 digits to 31" 20", subtending the
diameter of the moon. In the middle of the first eclipse, therefore, the center of
the moon clearly was outside the shadow by a quarter [the darkened area being
3 digits] of the diameter = 7' 50" of latitude. If this figure is subtracted from the
47" 54" of the total latitude, the remainder = 40" 4" = the radius of the shadow.
Likewise, in the second eclipse the shadow occupied, in addition to the moon’s
latitude, %5 of the lunar diameter = 10" 27”". To this add 29" 37", and the sum is
again 40" 4" = the radius of the shadow. Ptolemy believes that when the sun is
in conjunction or opposition with the moon at its greatest distance from the

earth, the lunar diameter = 31%".
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He says that with Hipparchus’ dioptra he found the sun’s diameter to be the
same, but the diameter of the shadow = 1° 21%’". He thought that the ratio
between these values = 13:5 = 2%er [ Syntaxis, V, 14].

How to demonstrate at the same time the distances of the sun and moon
from the earth, their diameters, the diameter of the shadow where the moon
passes through it, and the axis of the shadow. Chapter 19.

The sun too undergoes some parallax. Since this is slight, it is not easily per-
ceived, except that the distances of the sun and moon from the earth, their
diameters, the diameter of the shadow where the moon passes through it, and
the axis of the shadow are mutually interrelated. Therefore these quantities
disclose one another in analytical demonstrations. First, I shall review Ptolemy’s
conclusions about these quantities and his procedure for demonstrating them
[Syntaxis, V, 15]. From this material I shall select what seems entirely correct.

He assumes that the sun’s apparent diameter = 31%’, the value which he
uses invariably. With it he equates the diameter of the full and new moon when
it is at apogee. This, he says, is a distance of 641%oF, with the earth’s radius = 1P.
Hence he demonstrated the rest in the following way.

Let ABC be a circle of the solar globe through its center D. Let EFG be a
circle of the terrestrial globe, at its greatest distance from the sun, through its
own center K. Let AG and CE be straight lines tangent to both circles and,
when they are extended, let them meet at S, the apex of the shadow. Draw the
straight line DKS through the centers of the sun and earth. Also draw AK and
KC.Join AC and GE, which should not differ at all from diameters on account
of their enormous distance. On DKS take LK = KM at the distance of the full
and new moon at apogee = 64'%of, when EK = 17, in Ptolemy’s opinion. Let
QMR be the diameter of the shadow where the moon passes through it under
these same conditions. Let NLO be the moon’s diameter perpendicular to DK,
and extend it as LOP.

The first problem is to find the ratio DK:KE. With 4 right angles = 360°,
angle NKO = 31%4/;

half of it = LKO 15%". L is a right angle. Therefore, the angles of triangle LKO
being given, the ratio of sides KL:LO is given. As a length LO =17"33”, when LK
= 64P 10" or KE = 1P, Since LO:MR = 5:13, MR = 45" 38" in the same units. LOP
and MR are parallel to KE at equal distances from it. Therefore LOP + MR =
2KE. Subtracting MR + LO from 2KE leaves as a remainder OP = 56" 49"
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According to Euclid, VI, 2, EC:PC = KC:OC =
KD:LD = KE:OP = 60":56" 49”. Similarly LD 1is
given =56" 49", when the whole of DLK = 1». There-

fore the remainder KL = 3" 11". But in units of which
KL = 64 10" and FK = 17, the whole of KD = 1,210".
It has already been established that in such units
MR = 45" 38”. This makes clear the ratios KE:MR
and KMS:MS. Also in the whole of KMS, KM =
14 22", Alternately, in units of which KM = 64" 10/,

the whole of KIMIS = 268P = the axis of the shadow.
The foregoing is what Ptolemy did.

But after Ptolemy other astronomers found
that the foregoing conclusions did not agree well
enough with the phenomena, and reported other
findings about these topics. Yet they admit that
the greatest distance of the full and new moon
from the earth = 64 10’, and the apparent diam-
eter of the sun at apogee = 31%". They also con-

cede that the shadow’s diameter where the moon

passes through it = 13:5 [in relation to the moon’s
diameter], as Ptolemy asserted. Nevertheless they
deny that the moon’s apparent diameter at that

time is larger than 29%". Therefore they put the
shadow’s diameter at about 1° 16%". Hence they believe it follows that the dis-
tance of the sun at apogee from the earth = 1,146?, and the shadow’s axis = 2547,

where the earth’s radius = 1P.

They designate [Al-Battani], the scientist from Raqqa, as the originator of
these values, which nevertheless cannot be coordinated in any way.

With the intention of adjusting and correcting them, I put the apparent
diameter of the sun at apogee = 31" 40", since it must now be somewhat bigger
than before Ptolemy; [the apparent diameter] of the full or new moon when it
is at its higher apse = 30" the diameter of the shadow, where the moon passes
through it, = 80%09, because the ratio between them is recognized to be slightly
bigger than 5:13, say, 150:403; the entire sun at apogee is not covered by the
moon, unless the latter’s distance from the earth is less than 62 earth-radii; and

the greatest distance from the earth to the moon in conjunction with or oppo-

242 Nicolaus Copernicus. De Revolutionibus Orbium Ceelestium, Libri VI. Nuremberg, 1543. THE WARNOCK LIBRARY

page 122r



sition to the sun = 65% earth-radii [IV, 17]. For when these values are assumed,
they seem to be precisely in harmony not only with one another but also with
other phenomena, and in agreement with the visible solar and lunar eclipses.
Thus, in accordance with the foregoing demonstration, we shall have, in units
and minutes whereof KE, the earth’s radius, = 1 unit, LO = 17" 8”; therefore MR
= 46'1"; consequently OP = 56's1”; with LK = 65%°, the whole of DLK = the
distance from the earth to the sun at apogee = 1,1797; and KIMS = the axis of the
shadow = 265P.

The size of these three heavenly bodies, sun, moon, and earth, and a com-
parison of their sizes. Chapter 20.

Consequently it is also clear that KL = KID/18, and LO = DC/18. But 18 x LO
5P 27', with KE = 1P. Alternately, since SK: KE = 265 :1, similarly the whole of
SKD:DC = 1,444:5° 27, since these [sides] are [related to each other in the
same] proportion. This will be the ratio of the diameters of the sun and earth.
Spheres are to each other as the cubes of their diameters. Hence (5P 27°)* = 1617,
the factor by which the sun exceeds the terrestrial globe.

Furthermore, the moon’s radius = 17" 9", whereof KE = 1P.

Therefore the ratio of the earth’s diameter to the moon’s diameter = 7:2 = 3%:1.
When this is raised to the third power, it shows that the earth is 427 times

larger than the moon, and therefore the sun is 6,937 times larger than the moon.

The apparent diameter and parallaxes of the sun. Chapter 21.

The same magnitudes appear smaller when they are farther away than when
they are closer. It therefore happens that the sun, moon, and earth’s shadow
vary with their different distances from the earth, no less than the parallaxes
vary. All these variations are easily determined for any distance whatever on the
basis of the foregoing results. This is clear, in the first place, in the case of the
sun. For I have shown [III, 21] that the earth’s greatest distance from it = 10,322F,
whereof the radius of the circle of the annual revolution = 10,000P. The earth’s
closest approach = 9,678 in the other part of the diameter [of the circle of the
annual revolution]. Therefore, with the higher apse = 1,179 earth-radii [III, 19],
the lower apse = 1,105, and the mean apse = 1,142. Dividing 1,000,000 by 1,179,
in the right triangle we shall have 848 subtending the smallest angle = 2" 55 of
the greatest parallax, which occurs near the horizon. Similarly, dividing 1,000,000

by 1,105 = the least distance, we obtain gosF, subtending an angle of 3 7" = the
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largest parallax at the lower apse. But it has been shown [IV, 20] that the sun’s
diameter = 5270 earth-diameters, and at the higher apse appears = 31" 48”. For,
1,179:5270 = 2,000,000:9,245 = the diameter of the circle:the side subtending 31’
48”. Consequently at the least distance = 1,105 earth-radii, [the sun’s apparent
diameter] = 33" 54”. The difference between these values is therefore 2” 6", but
between the parallaxes

only as 12”. Ptolemy [Synzaxis, V, 17] deemed both these differences negligible
on account of their smallness, on the ground that the senses do not easily per-
ceive 1" or 2°, and such perception is even less feasible in the case of seconds.
Therefore, if everywhere we put the sun’s greatest parallax = 3, we shall seem to
have committed no error. But I shall take the sun’s mean apparent diameters
from its mean distances, or (as some astronomers do) from the sun’s apparent
hourly motion, which they think is to its diameter as 5:66 = 1:13%9 For, the

hourly motion is nearly proportional to the sun’s distance.

The moon’s varying apparent diameter and its parallaxes. Chapter 22.

A greater variation of both [apparent diameter and parallaxes] is evident in the
moon as the nearest heavenly body. For, when it is new and full, its greatest
distance from the earth = 65% earth-radii, and on the basis of the foregoing
demonstrations [IV, 17], its least distance = 55%o. For the half moon, the great-
est distance = 682%o, and the least distance = 521%o earth-radii. Therefore, when
we divide the radius of the [earth’s] circumference by the distance earth-moon,
at those four limits we shall obtain the parallaxes of the rising or setting moon:
when it is most remote, 50" 18" for the half moon, and 52" 24" for the full and
new moon; when these are at their nearest, 62" 217, and 65" 45" for the half
moon at its nearest.

From these parallaxes the moon’s apparent diameters also become clear.
For, as has been shown [IV] 20], the ratio earth-diameter:moon-diameter = 7:2.
Likewise, earth-radius:moon-diameter = 7:4, and this is also the ratio of the
parallaxes to the moon’s apparent diameters. For, the straight lines enclosing
the angles of the greater parallaxes and of the apparent diameters at the same
passage of the moon do not differ from one another at all. The angles are nearly
proportional to the chords subtending them, nor is there any perceptible dif-
terence between them. This compact summary makes it clear that at the first

limit of the parallaxes enumerated above, the moon’s apparent diameter = 28%’;
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at the second limit, about 30" at the third limit, 35" 38"; and at the last limit, 37’
34”.This last value would have been nearly 1° according to the theory of Ptolemy
and others, and the moon, with half [of its surface] shining at that time, would

have to cast as much light on the earth as the full moon.

To what extent does the earth’s shadow vary? Chapter 23.

I also said above [IV, 19] that the ratio of the shadow’s diam-
eter to the moon’s diameter = 403:150. Therefore, at full and
new moon with the sun at apogee, the smallest shadow-di-

ameter = 80" 36", the greatest = 95" 44", and the greatest dif-

terence = 15 8”. Even when the moon passes through the same
place, the earth’s different distances from the sun also cause
the earth’s shadow to vary in the following way.

Again, as in the preceding diagram, draw straight line DKS
through the centers of the sun and of the earth, as well as
tangent CES. Join DC and KE. As has been shown, when
distance DK = 1,179 earth-radii, and KM = 62 earth-radii, MR
= the radius of the shadow = 46%  of the earth-radius KE;
MKR, made by joining K and R = the angle of the apparent
[radius of the earth’s shadow] = 42" 32”; and KIMS = the axis
of the shadow = 265 earth-radii.

But when the earth is nearest to the sun, with DK = 1,105
earth-radii, we shall compute the earth’s shadow at the same
[place of the] moon’s passage as follows. Draw EZ parallel to
DK. CZ: ZE = EK:KS. But CZ = 4?70 earth-radii, and ZE =
1,105 earth-radii. For, ZE and the remainder DZ are equal to DK and KE, since
KZ is a parallelogram. Hence KS = 248'%o earth-radii. But KM = 62 earth-
radii, and therefore the remainder MS = 1861%o. But since SM: MR = SK: KE,
therefore MR = 45%o0" of an earth-radius,

and MKR = the angle of the apparent [radius of the earth’s shadow] = 41" 35"

For this reason it happens that at the same place of the moon’s crossing the
approach and withdrawal of the sun and earth cause the shadow’s diameter to
vary at the most, with KE = 17, by %o, which is seen as 57, when 360° = 4 right
angles. Furthermore, the ratio of the shadow’s diameter to the moon’s diameter
in the first case was greater, in the second case less than 13:5, which was a sort of

mean value. Therefore we shall commit a negligible error if we use the same value
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everywhere, thereby saving work and following the opinion of the ancients.

Tabular presentation of the individual solar and lunar parallaxes in the circle
which passes through the poles of the horizon. Chapter 24.

Now there will be no uncertainty in ascertaining every single solar and lunar
parallax too. Reproduce AB as [an arc of] the earth’s circumference through
center C and the point below the zenith. In the same plane let DE be the
moon’s circle; FG, the sun’s circle; CDE, the line through the point below the
zenith; and CEG, the line on which the true places of the sun and moon are
taken. Draw AG and AE as the lines of sight to those places.

Then the solar parallax is indicated by angle AGC, and the lunar parallax
by angle AEC. Moreover, the difference between the solar and lunar [paral-
laxes] is measured by angle GAE = the difference between angles AGC and
AEC. Now let us take ACG as the angle to which we wish to compare those
[other angles], and let ACG be, for example, 30°. According to the theorems on
Plane Triangles, when we put line CG = 1,142° whereof AC = 17, clearly angle
AGC = the difference between the sun’s true and apparent altitudes = 1%2". But
when angle ACG = 60°, AGC =2"36". Similarly for the other [values of angle
ACG, the solar parallaxes] will be obvious.

But in the case of the moon [we use] its four limits.

For, suppose that we take angle DCE or arc DE = 30° with 360° = 4 right
angles, when the moon is at its greatest distance from the earth, with CE = 68P
21" whereof CA = 17, as I said [IV, 22]. Then we shall have triangle ACE, in
which two sides AC and CE are given, as well as angle ACE. From this infor-
mation we shall find AEC = the parallax angle = 25" 28”. When CE = 65%?
angle AEC = 26"36". Similarly at the third limit, when CE = 557 8', the parallax
angle AEC = 31" 42”. Finally, at the [moon’s] least distance [from the earth],

when CE = 52f 17, angle AEC = 33" 27" -
Moreover, when arc DE = 60° the parallaxes
will be, in the same order, first, 43" 55 sec-
ond, 45" 517; third, 54%2"; and fourth, 57%".

I shall write down all these values in the

order of the following Table. For greater con-
venience in use I shall extend it, like the oth-

ers, to a series of 30 rows, but at intervals of

6°. These degrees are to be understood as
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twice the number of degrees reckoned from the zenith to a maximum of 9o°. I
have arranged the Table in 9 columns. The 1st and 2nd columns will contain
the common numbers of the circle. In the 3rd column I shall put the solar
parallaxes. After them come the lunar parallaxes [in columns 4-9]. The 4th
column will show the differences by which the smallest parallaxes, occurring
when the half moon is at apogee, are less than those in the following column,
which occur at full and new moon. The 6th column will exhibit the parallaxes
produced by the full or new moon at perigee. The minutes which follow [in the
7th column] are the differences by which the parallaxes of the half moon when
it is nearest to us exceed those in their vicinity. Then the last two remaining
columns are reserved for the proportional minutes, by which the parallaxes
between those four limits can be computed. I shall explain these minutes also,
first those near the apogee, and then those which fall between the first [two]
limits [with the moon at apogee in the quadratures and in the syzygies, respec-
tively]. The explanation proceeds as follows.

I say let circle

AB be the moon’s first epicycle, with center C. Taking )
D as the center of the earth, draw the straight line S \_ -I_"'E
DBCA. With apogee A as center, describe the second / [/

epicycle EFG. Take arc EG = 60°. Join AG and CG. 'I
Straight line CE = 5'%o earth-radii, as was shown | \
above [IV, 17]. Moreover, DC = 60! %o earth-radii, and N A
EF = 25%o earth-radii. Therefore, in triangle ACG, NS
side GA = 1 25, side AC = 6P 36', and angle CAG, '
included between these sides, is also given. Hence, in
accordance with the theorems on Plane Triangles, the
third side CG = 6P 7" in the same units. Consequently
the whole of DCG, if formed into a straight line, or
its equivalent DCL = 66 25". But DCE = 65%2¢. Hence
the remainder = EL 55%". Through this given ratio,
when DCE = 60?, EF = 2P 37, and EL = 46" in the
same units. Accordingly, on the basis of EF = 60, as
the excess ELL (J18". I shall enter this value in the 8th

column of the Table opposite 60° [in the 1st column].

I shall make a similar demonstration for the peri-

gee B. With it as a center, reproduce the second epi-
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cycle MNO, with angle MBN = 60°. As before, triangle BCN will have its
sides and angles given. Likewise the excess MP Us5%’, with an earth-radius =
1P. In those units DBM = 557 8". However, it DBM = 60P, in those units MBO
= 3P 7', and the excess MP = 55°. But 37 7":55" [160:18, and [we have] the same

results as before [in the case of the apogee], though they are a few seconds

apart. I shall follow this procedure also in the other cases, with which I shall fill

up the 8th column in the Table. But if, instead of these values, we use those

enumerated in the [column of proportional minutes in the] Table of

Prosthaphaereses [after IV, 11], we shall not be committing any error, since they

are almost identical and very small quantities

are involved.

Remaining [to be considered] are the proportional
minutes for the middle limits, that is, between the sec-
ond and third. Now let the full and new moon de-
scribe the first epicycle AB, with center C. Take D as
the center of the earth, and draw straight line DBCA.
Starting from apogee A, take an arc, for example, AE
= 60°. Join DE and CE. We shall have triangle DCE,
of which two sides are given: CD = 60 19", and CE =
sP11". So is interior angle DCE = 180° - ACE. Accord-
ing to the theorems on Triangles, DE = 637 4. But the
whole of DBA = 65%°, exceeding ED by 2f 27'. But
AB = 10P 22":2P 27" = 60:14, which may be entered in
the Table [in the gth column] opposite 60°. With this
as an example I have completed what was left, and I
have finished the Table, which follows. I have added
another Table of the Radii of the Sun, Moon, and
Earth’s Shadow in order that they may be available as

far as possible.

-4

T
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Table of the Solar and Lunar Parallaxes

Difference to be

Difference to be

Lunar Lunar
Sﬁ%{zﬁ%a%}? Paraﬁlai( at Par;llaj( at L:;SS:C,E %’:}T;;Eihc Proportional Minutes of the

Common | Solar  |finOrderto Obtin|the Second| the Third |orerto Obwinthe| Smaller | Larger
Numbers | Parallaxes | *Jiaroe | Limit Limit [ Epicycle | Epicycle

6 |354| o | 10| O 7 2 | 46 | 3 8| o | 12 o o

12 348 o | 19 o | 14 33 6 | 36 | o | 23 I o

18 | 342 | o 29 o 21 8 19 9 53 o | 34 3 I

24 336 | o 38 o 28 | 11 4 13 | 10 o 45 4 2

30 330 0 | 47 | o |35 | 13|49 | 16| 26| o |36 5 3

36 |324| 0o |56 | o | 42| 16 | 32 | 19 | 40 | I 6 7 5

42 | 318 | 1 5 o | 48 | 19 5 22 | 47 I 16 10 7

48 312 | 1 3 o | 55| 2t |39 | 25| 47| 1 |26 2 9
54 [306 | 1 | 22 | 1 I | 24| 9 | 28| 49| 1 | 35 15 12
60 [300 | 1 31 I 8 | 26 | 36 | 31 | 42 | 1 | 4§ 18 14
66 | 204 | 1 | 39 I | 14 | 28 | 57 | 34 | 3t I | 54 21 17
72 | 288 | 1 | 46 I 19 | 31 | 14 | 37 | 14 2 3 24 20
78 | 282 | 1 53 I 24 | 33| 25| 39 | 50 2 I 27 23
84 | 276 | 2 o I | 29| 35| 31| 42| 19| 2 |19 30 26
90 [270 | 2 | 7 | T | 34| 37| 31| 44| 40| 2 |26 34 29
96 | 264 | 2 | 13 | I |39 |39 | 24| 46 | 54| 2 | 33 37 32
102 [ 258 | 2 |20 | I | 44| 41| 10| 49 | © 2 | 40 39 35
108 | 252 | 2 | 26 1 | 48| 42| 50| 50| 59 | 2 | 46 42 38
14 |246 | 2 [ 30 | T | 52| 44 | 24 | 52| 49| 2 | 53 45 41
120 (240 | 2 [ 36 | 1 |56 | 45| 51| 54|30 | 3 | © 47 44
126 | 234 | 2 | 40 | 2 o | 47| 8 | 56| 2 3 6 49 47
132 | 228 | 2 | 44 | 2 2 | 48 | 15 | 57 | 23 3 II 5I 49
138 | 222 2 |59 | 2 | 3 |49 | 15| 58|36 | 3 |14 53 52
144 216 | 2 | 52 | 2 | 4 | 50 | 10|59 |39 | 3 |17 55 54
50 [ 210 | 2 | 54 2 4 | 50| 55 | 60 | 31 3 | 20 57 56
156 [ 204 | 2 | 56 2 5 51 | 29 | 61 | 12 | 3 22 58 57
162 | 198 | 2 | 58 2 5 51| 56 | 61 | 47 | 3 23 59 58
168 | 192 | 2 | 59 2 6 | 52| 13| 621 9 3 23 59 59
174 | 186 | 3 o 2 6 | 52 | 22| 62| 19 | 3 | 24 60 60
180 | 180 | 3 o 2 6 | 52 | 24 | 62| 21 | 3 | 24 60 60
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Table of the Radii of the Sun, Moon, and [Earth’s] Shadow
Shadow’s
Common Numbers Sun’s Radius Moon’s Radius Shadow’s Radius | Variation

o o P .o P ,e . .o Minutes

6 354 15 50 15 o 40 18 o
12 348 15 50 15 I 40 21 o
18 342 15 51 15 3 40 26 I
24 336 15 52 15 6 40 34 2
30 330 15 53 15 9 40 42 3
36 324 15 55 15 14 40 56 4
42 318 15 57 15 19 41 10 6
48 312 16 o 15 25 41 26 9
54 306 16 3 15 32 41 44 11
60 300 16 6 15 39 42 2 14
66 294 16 9 15 47 42 24 16
72 288 16 12 15 56 42 40 19
78 282 16 15 16 5 43 13 22
84 276 16 19 16 13 43 34 25
90 270 16 22 16 22 43 58 27
96 264 16 26 16 30 44 20 31
102 258 16 29 16 39 44 44 33
108 252 16 32 16 47 45 6 36
114 246 16 36 16 55 45 20 39
120 240 16 39 7 4 45 52 42
126 234 16 42 17 12 46 13 45
132 228 16 45 17 19 46 32 47
138 222 16 48 17 26 46 51 49
144 216 16 50 17 32 47 7 51
150 210 16 53 17 38 47 23 53
156 204 16 54 17 41 47 31 54
162 198 16 55 17 44 47 39 55
168 192 16 56 17 46 47 44 56
174 186 16 57 17 48 47 49 56
180 180 16 57 17 49 47 52 57

Computing the solar and lunar parallax. Chapter 23.

I'shall also briefly explain the method of computing the solar and lunar parallaxes
by means of the Table. With the sun’s distance from the zenith or twice the
moon’s distance therefrom, we take the corresponding parallaxes in the Table: the
single entry in the case of the sun, but in the case of the moon the parallaxes at its
four limits. Also, with twice the moon’s motion or distance from the sun, we find
the proportional minutes in the first [column of proportional minutes, that is, the
8th column]. With these proportional minutes we obtain, as proportional parts
of 60, the excess for both the first and the last limits. We always subtract [ the first

of these proportional parts of 60] from the next parallax in the sequence [that is,
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the parallax at the second limit]; and we always add the second [of these propor-
tional parts of 60] to the parallax at the next to the last limit. This gives us a pair
of lunar parallaxes, reduced to the apogee and perigee, and either increased or
diminished by the smaller epicycle. Then with the lunar anomaly we take the
proportional minutes in the last column. With these proportional minutes we
next obtain the proportional part of the difference between the parallaxes just
tound. This proportional part [of 60] we always add to the first of the reduced
parallaxes, that at the apogee. The result is the lunar parallax sought for a [given]
place and time, as in the [following] example.

Let the moon’s distance from the zenith = 54°% the moon’s mean motion = 15°%
and its normalized motion in anomaly = 100°. I wish to find the lunar parallax by
means of the Table. I double the degrees of the [zenith] distance, making them
108°. Corresponding to 108°in the Table as the excess at the second limit over the
first limit is 1" 48”; the parallax at the second limit = 42" 50"; the parallax at the third
limit = 50" 59; the excess of the parallax at the fourth limit over the third 2" 46”. 1
note these values one by one. The moon’s motion, when doubled, = 30°. For this
figure I find 5" in the first column of proportional minutes. With these 5'I take the
proportional part of 60 = 9" of the excess [at the second limit] over the first. I
subtract these 9" from 42’ 50", the parallax [at the second limit]. The remainder is
42" 41”. Similarly; of the second excess = 2" 46", the proportional part 14”. These 14”
are added to 50" 59" = the parallax at the third limit, making the sum = 51" 13”. The
difference between these parallaxes = 8" 32”. After this, with the [100] degrees of the
normalized anomaly, in the last column I take the proportional minutes = 34. With
these I find the proportional part of the 8" 32" difference = 4" 50"

When these 4" 50" are added to the first corrected parallax, the sum is 47" 317,
This is the required parallax of the moon in the vertical circle.

However, any lunar parallaxes differ so slightly from those which occur at
tull and new moon that it would seem sufficient if everywhere we kept between
the middle limits. These we especially need for the prediction of eclipses. The
others do not merit so extensive an investigation, which will perhaps be thought

to serve curiosity rather than usefulness.

How the parallaxes in longitude and latitude are separated from each
other. Chapter 26.
The parallax is readily separated into longitude and latitude; that is, [the dis-

tance] between the sun and moon [is measured] by arcs and angles of the eclip-

251 Nicolaus Copernicus. De Revolutionibus Orbium Ceelestium, Libri VI. Nuremberg, 1543. THE WARNOCK LIBRARY

page 127v




tic and of the vertical circle, which intersect each other. A
For when the vertical circle meets the ecliptic at right
angles, obviously it produces no parallax in longitude.
On the contrary, the entire parallax passes into the lati-
tude, since the circles of latitude and altitude are the

same. But, on the other hand, when the ecliptic hap-

pens to intersect the horizon at right angles and be- £ B

. . . . . . E’
comes identical with the circle of altitude, if the moon
at that time lacks latitude, it undergoes only a parallax e

in longitude. But if it acquires any latitude, it does not
escape having some parallax in longitude. Thus let ABC be the ecliptic, inter-
secting the horizon at right angles. Let A be the pole of the horizon. Then
ABC will be identical with the vertical circle of the moon, which has no lati-
tude. If its place is B, its entire parallax BC will be longitudinal.

But suppose that the moon also has a latitude. Through the poles of the ecliptic
draw circle DBE, and take DB or BE = the moon’s latitude. Obviously, neither side
AD nor side AE will be equal to AB. Nor will D or E be a right angle, since circles
DA and AE do not pass through the poles of DBE. The parallax will participate
somewhat in latitude, to a greater extent the nearer the moon is to the zenith. For
while DE, the base of triangle ADE, remains constant, the shorter are sides AD
and AE, the more acute are the angles made by them with the base. These angles
become more like right angles, the farther removed the moon is from the zenith.

Now let DBE, the moon’s vertical circle, intersect the ecliptic ABC ob-
liquely. Let the moon have no latitude, as when it is at B, the intersection with

the ecliptic.

Let BE be the parallax in the vertical circle. Draw arc EF in the circle passing
through the poles of ABC. Then in triangle BEF, angle EBF is given (as was

shown above); F is a right angle; and side BE also is given. In
accordance with the theorems on Spherical Triangles, BF and
FE, the remaining sides, are given, corresponding to the par-
allax BE, the latitude being FE, and the longitude being BF.
However, on account of their small size BE, EF, and FB differ
slightly and imperceptibly from straight lines. Therefore if we
treat the right triangle as rectilinear, the computation will

thereby become easy, and we shall commit no error.
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The calculation is more difficult when the moon has some latitude. Repro-

duce the ecliptic ABC, intersected obliquely by DB, the circle passing through

the poles of the horizon. Let B be the moon’s place
in longitude. Let its latitude be BF to the north or
BE to the south. From the zenith D let fall on the }
moon DEK and DFC as vertical circles, on which
are the parallaxes EK and FG. For, the moon’s true
places in longitude and latitude will be points E and
F. But it will be seen at K and G, from which draw
arcs KM and LG perpendicular to the ecliptic ABC.

The moon’s longitude and latitude are known, as well

as the latitude of the region. Therefore, in triangle
DEB two sides are known, DB and BE, as well as
ABD, the angle of intersection [of the ecliptic and the vertical circle]. Adding

ABD to the right angle gives the whole angle DBE. Consequently the remain-
ing side DE will be given, as well as angle DEB.

Similarly in triangle DBF two sides, DB and BE are given, as well as angle
DBE, which is the remainder when angle ABD is subtracted from the right
angle [ABF]. Then DF also will be given, together with angle DFB. Therefore
the parallaxes EK and FG of both arcs DE and DF are given through the
Table. So is the moon’s true distance DE or DF from the zenith, and likewise
the apparent distance DEK or DFG.

But DE intersects the ecliptic at point N. In triangle EBN, NBE is a right
angle; angle NEB is given; and so is the base BE. The remaining angle BNE will
be known, as well as the remaining sides BN and NE. Similarly in the whole
triangle NKM, from the given angles M and N and the whole side KEN, the
base KIM will be known. This is the moon’s apparent southern latitude. Its excess
over EB is the parallax in latitude. The remaining side NBM is given. When NB
is subtracted from NBM, the remainder BM is the parallax in longitude.

Similarly in the northern triangle BFC, B is a right angle, while side BF
and angle BFC are given.

Therefore the remaining sides BLC and FGC are given, as well as the remain-
ing angle C. Subtracting FG from FGC leaves GC as a side given in triangle
GLC, in which CLG is a right angle, and angle LCG is given. Consequently
the remaining sides GL and LC are given. So is the remainder when [LC is
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subtracted] from BC; it is BL, the parallax in longitude. Also given is the ap-

parent latitude GL, whose parallax is the excess of the true latitude BF.
However (as you see) this computation, which is expended on very small

magnitudes, costs more labor than it bears fruit. For it will be enough to use

angle ABD for DCB, and DBF for DEB, and sim-
ply (as before) the mean arc DB always for arcs DE

and EF, ignoring the lunar latitude. Nor will any
error be apparent on this account, especially in the
regions of the [earth’s] northern side. On the other

hand, in the extreme southern areas, when B touches

o

the zenith at the maximum [lunar] latitude of g
and the moon is nearest to the earth, the difference JaA
is about 6’. But during eclipses when the moon is el

in conjunction with the sun and its latitude cannot ) 2l

exceed 1%4° the difference can be only 1%’. These
considerations therefore make it clear that in the ecliptic’s eastern quadrant the
parallax in longitude is always added to the moon’s true place, and in the other
quadrant always subtracted from it, in order to obtain the moon’s apparent
longitude. Its apparent latitude is acquired through the parallax in latitude. For
if they are on the same side [of the ecliptic], they are added together. But if they
are on opposite [sides], the smaller is subtracted from the larger, and the re-
mainder is the apparent latitude on the same side as the larger.

Confirmation of the assertions about the lunar parallaxes. Chapter 27.

The lunar parallaxes, as set forth above [IV, 22, 24-26], are in agreement with
the phenomena, as I can assert on the basis of many other observations, such as

the one I made in Bologna on 9 March 1497 A.D. after sunset. I watched

the moon about to occult [Aldebaran,] the bright star in the Hyades which the
Romans call Palilicium. After waiting, I saw the star touch the dark side of the
lunar globe, with its light extinguished between the moon’s horns at the end of
the sth hour of the night [ = 1 p.m.]. It was closer to the southern horn by
about %3 of the moon’s width or diameter. It was computed to be at 2° 52" within
the Twins and at 5%° in southern latitude. Obviously, therefore, the center of
the moon apparently was half of its diameter west of the star. Consequently, its
apparent place was 2°36” in longitude, and about 5° 6" in latitude. Accordingly,
from the beginning of the Christian era there were 1,497 Egyptian years, 76
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days, plus 23 hours at Bologna. However, at Cracow, which lies nearly 9° farther
east, the additional time would be 23 hours, 36 minutes, plus 4 minutes added
for uniform time, since the sun was at 28%° within the Fishes. The moon’s
uniform distance from the sun, then, was 74°% its normalized anomaly, 111° 10
the moon’s true place, 3° 24" within the Twins; the southern latitude, 4°357; and
the true motion in latitude, 203° 41". At that time, moreover, at Bologna 26°
within the Scorpion was rising at an angle of 59%° the moon was 84° from the
zenith; the angle of intersection between the vertical circle and the ecliptic was
about 29°% the lunar parallax in longitude, 51’, and in latitude, 30". These values
agree so thoroughly with the observation that nobody need doubt the correct-

ness of my hypotheses and the statements based on them.

The mean conjunctions and oppositions of the sun and moon. Chapter 28.
The statements made above about the motion of the moon and sun point to
the method of investigating their conjunctions and oppositions. For any time
close to when we think an opposition or conjunction will occur, we will look up
the moon’s uniform motion. If we find that it has just completed a circle, we

know that there is a conjunction;

if a semicircle, the moon is full [at opposition]. But since this [precision] is
seldom encountered, we must examine the distance between the two bodies.
When we divide this distance by the moon’s daily motion, we will know the
quantity of time since or until the occurrence of a syzygy, according as the
motion was in excess or fell short. For this time, then, we will look up the
motions and places, by which we will compute the true new and full moons,
and distinguish the conjunctions at which eclipses occur from the others, in the
manner indicated below [IV, 30]. Once we have established these phases, we
may extend them to any other months and continue them for several years by
means of a 12-month Table. This contains the [partial] times, the uniform
motions of the sun and moon in anomaly, and of the moon in latitude, each
value of which is linked with the individual uniform values previously found.
But with regard to the solar anomaly, in order that we may have it at once, I
shall appropriately record it in its normalized form. For, its nonuniformity will
not be perceived in a single year, nor in several years, on account of the slowness

of its origin, that is, of its higher apse.
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Table of the Conjunction and Opposition of the Sun and Moon
Partial Times Moon's Motion in Anomaly Moon’s Motion in Latitude
Day- Day- | Sixtieths of o o . .. o o
Months| Days Mir?\)l]tes Sec?rllds Day-Seconds 6o 6o
I 29 31 50 9 o 25 49 o o 30 40 14
2 59 3 40 18 o 5I 38 o I I 20 28
3 88 35 30 27 I 17 27 I I 32 o 42
4 118 7 20 36 I 43 16 I 2 2 40 56
5 147 | 39 Io 45 2 9 5 2 2 33 21 Io
6 | 177 | & o | 54 2 | 34 | 54 2 3 4 1 24
7 206 | 42 51 3 3 o 43 2 3 34 41 38
3 236 14 41 12 3 26 32 3 4 5 21 52
9 265 | 46 31 21 3 52 21 3 4 36 2 6
10 295 18 2I 30 4 18 10 3 5 6 42 20
I 324 | 50 I 39 4 43 59 4 5 37 22 34
12 354 22 I 48 5 9 48 4 o 8 2 48
For the Half-Month Between Full and New Moon
| 14 | 45 [ 55 [ 46| 3 [ 12 [ 54 [30] 3 [ 15 [2]7
Sun’s Motion in Anomaly
Months| 60° ° ’ ” Months| 60° °
I o 29 6 18 7 3 23 44 7
2 o 58 12 36 3 3 52 50 25
3 I 27 | 18 | 54 9 4 2 | 56 | 43
4 I 56 25 12 10 4 51 3 I
5 2 25 31 31 53 5 20 9 20
6 2 54 | 37 | 49 12 5 49 15 38
For the Half-Month
. [ [ [ [ [w]olulsnl|os

Investigating the true conjunctions and oppositions of the sun and

moon. Chapter 29.

After obtaining (by the aforesaid method) the time of the mean conjunction or
opposition of these bodies as well as their motions, for the purpose of finding
their true [syzygies] we must have the true distance by which they are west or
east of each other. For if the moon is west of the sun in a [mean] conjunction or
opposition, obviously a true [syzygy] will occur. If the sun [is west of the moon],
the true [syzygy] for which we are looking has already happened. These [se-
quences] are made clear by the prosthaphaereses of both bodies. For if their
prosthaphaereses are zero or equal and in the same sense, that is, both additive
or both subtractive, the true conjunctions or oppositions obviously coincide

with the mean [syzygies] at the same instant. But if the prosthaphaereses are
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unequal [in the same sense], the difference [between the prosthaphaereses]
indicates the distance between the bodies. The body having the greater addi-
tive or subtractive [prosthaphaeresis] is west or east [of the other body]. But
when the prosthaphaereses are in opposite senses, the body whose prostha-
phaeresis is subtractive will be that much farther west, since the sum of the
prosthaphaereses gives the distance between the bodies. With regard to this
distance, we will consider in how many whole hours it can be traversed by the
moon (taking 2 hours for each degree of distance).

Thus, if the distance between the bodies is about 6°, we will assume 12
hours for those degrees. Then for this time interval as thus determined, we will
look for the moon’s true distance from the sun. We will find this easily when we
know that the moon’s mean motion = 1° 1" in 2 hours, while its hourly true
motion in anomaly around full and new moon Us0". In 6 hours the uniform
motion amounts to 3° 3’, and the true motion in anomaly to 5°. With these
figures, in the Table of the Lunar Prosthaphaereses [after IV, 11] we will look up
the difference between the prosthaphaereses. This difference is added to the
mean motion if the anomaly is in the lower part of the circle; if it is in the upper
part, the difference will be subtracted. The sum or remainder is the moon’s true
motion in the assumed hours. This motion is sufficient if it is equal to the
previously determined distance. Otherwise this distance, multiplied by the es-
timated number of hours, is divided by this motion; or we divide the distance,

as it is, by what we have obtained as the true hourly motion.

The quotient will be the true time difference in hours and minutes between the
mean and true conjunction or opposition. We shall add this difference to the
time of the mean conjunction or opposition, if the moon is west of the sun or of
the place diametrically opposite the sun. If the moon is east [of these places],
we will subtract this difference. Then we will have the time of the true conjunc-
tion or opposition.

I admit, however, that the sun’s nonuniformity also adds or subtracts some-
thing. But this quantity may rightly be ignored, since it cannot amount to 1’
over the entire time, even [with the two bodies during syzygy] at their greatest
distance, which surpasses 7°. This method of determining the lunations is more
reliable. For, those who rely exclusively on the moon’s hourly motion, which
they call the “hourly surplus,” are sometimes mistaken and are often compelled
to repeat their computation, since [the motion of ] the moon changes even

from hour to hour and does not remain constant. Therefore, for the time of a
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true conjunction or opposition we shall establish the true motion in latitude in
order to obtain the moon’s latitude, and also the sun’s true distance from the
vernal equinox, that is, in the [zodiacal] signs, from which the moon’s place is
acquired, as being the same or the opposite.

In this way the mean and uniform time is known for the meridian of Cra-
cow, and we reduce it to apparent time by the method explained above. But if
we wish to determine these phenomena for some place other than Cracow, we
consider its longitude. For each degree of that longitude we take 4 minutes of
an hour, and 4 seconds of an hour for each minute of longitude. We add these
intervals to Cracow time, if the other place is farther east; if it is farther west,
we subtract the intervals. The remainder or sum will be the time of the [true]

conjunction or opposition of the sun and moon.

How conjunctions and oppositions of the sun and moon at which eclipses
occur may be distinguished from others. Chapter 30.
Whether or not eclipses occur [in syzygies] is easily decided in the case of the
moon. For if its latitude is less than half [the sum] of the diameters of the moon
and shadow, the moon undergoes an eclipse; but if its latitude is greater [than
half the sum of those diameters], it will not be eclipsed.

The case of the sun, however, is more than enough troublesome, since it
involves both [the solar and lunar] parallaxes, by which in general an apparent

conjunction differs from the true conjunction. We therefore investigate

the difference in longitude between the sun and the moon at the time of the
true conjunction. Likewise, at 1 hour before the true conjunction in the eastern
quadrant is of the ecliptic, or in the western quadrant of the ecliptic at 1 hour
after the true conjunction, we look for the moon’s apparent longitudinal dis-
tance from the sun, in order to find out apparently how far the moon moves
away from the sun in an hour. Dividing that difference in longitude by this
hourly motion, we obtain the difference in time between the true and apparent
conjunction. This difference in time is subtracted from the time of the true
conjunction in the eastern part of the ecliptic, or it is added in the western part
(since in the former case the apparent conjunction precedes, but in the latter
case follows, the true conjunction). The result will be the desired time of the
apparent conjunction. Then for this time we will compute the moon’s apparent
latitude from the sun, or the distance between the centers of the sun and moon

[at the time] of the apparent conjunction, after the solar parallax has been sub-
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tracted. If this latitude is greater than half [the sum] of the diameters of the sun
and moon, the sun will not undergo an eclipse; but it will, if this latitude is less
[than half the sum of those diameters]. These conclusions make it clear that if
the moon at the time of a true conjunction has no parallax in longitude, the
true and apparent conjunctions will coincide. This happens at about 9o° of the

ecliptic, measured from the east or from the west.

The size of a solar and lunar eclipse. Chapter 31.
After we learn that the sun or moon will be eclipsed, we will also easily know
how great the eclipse will be. In the case of the sun [we use] the apparent
[difference in] latitude between the sun and the moon at the time of the appar-
ent conjunction. For if we subtract this latitude from half [the sum] of the
diameters of the sun and moon, the remainder is the eclipsed portion of the
sun, as measured along its diameter. When we multiply this remainder by 12,
and divide the product by the sun’s diameter, we will have the number of eclipsed
digits in the sun. But if no latitude intervenes between the sun and moon, the
entire sun will be eclipsed, or as much of it as the moon can cover.

In the case of a lunar eclipse [we proceed] in nearly the same way, except that
instead of the apparent latitude we use the simple latitude. When this is sub-
tracted from half [the sum] of the diameters of the moon and shadow, the re-

mainder is the eclipsed portion of the moon, provided that the moon’s latitude

is not less than half [the sum] of [these] diameters by a lunar diameter. For
then [if the moon’s latitude is a lunar diameter less than half this sum] the
entire moon will be eclipsed. Moreover, the smaller latitude will also somewhat
prolong the time [spent by the moon] in the shadows. This time will be at its
maximum when there is no latitude, as is entirely obvious, I believe, to those
who consider the matter. In a partial lunar eclipse, then, when we multiply the
eclipsed portion by twelve, and divide the product by the moon’s diameter, we
shall have the number of the eclipsed digits, exactly as was explained in the case

of the sun.

Predicting how long an eclipse will last. ~ Chapter 32.

It remains to be seen how long an eclipse will last. In this connection, it should
be noted, we treat the arcs lying between the sun, moon, and shadow as straight
lines on account of their small size, which makes them seem no different from

straight lines.
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Thus, take the center of the sun or =
1l

shadow in point A, and line BC as the pas- 4
sage of the moon’s globe. Let B be its center ; I\
as it touches the sun or shadow at the begin- | = Ll —F

ning of the contact, and C [its center] at the
end of its emergence. Join AB and AC. Drop AD perpendicular to BC. When
the moon’s center is at D, obviously that will be the middle of the eclipse. For,
AD is shorter than the other lines descending from A [to BC]. BD = DC, since
AB = AC, each of which consists, in a solar eclipse, of half [the sum] of the

diameters of the sun and moon, and of the moon and shadow in a lunar eclipse.
AD is the true or apparent latitude of the moon at mid-eclipse. (AB)? — (AD)?
= (BD). Hence the length of BD will be given. When we divide this length by
the true hourly motion of the moon in a lunar eclipse, or by the apparent [hourly
motion of the moon] in a solar eclipse, we will have the time of half the dura-
tion [of the eclipse].

The moon, however, often tarries in the middle of the shadow. This hap-
pens when half the sum of the diameters of the moon and shadow exceeds the
moonss latitude by more than its diameter, as I said [IV, 31]. Thus, assume E as

the moon’s center at the beginning of total

immersion, when the moon contacts the shadow’s circumference from within,
and F [as the moon’s center] at its second contact where the moon first emerges
[from the shadow]. Join AE and AF. Then, in the same way as before, ED and
DF will clearly be half the time spent in the shadow. For, AD is known to be
the latitude of the moon, and AE or AF the excess of half the shadow’s diam-

eter over half the moon’s diameter. Therefore ED or DF will be determined.

When either is once more divided by the true hourly
motion of the moon, we will have half the time spent
[in the shadow], which we were looking for.

Yet here it should be noticed that as the moon
moves on its own circle, it does not tick off the de-
grees of longitude on the ecliptic exactly equal with
the degrees on its own circle (as measured by the cir-
cles passing through the poles of the ecliptic). Nev-
ertheless the difference is quite minute. At the full

distance of 12° from the intersection with the ecliptic,

close to the outermost limit of solar and lunar eclipses,
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the arcs of those circles do not differ from each other by 2" = %1owf an hour. For
this reason I often use one of them instead of the other, as though they were
identical. I likewise also use the same lunar latitude at the limits of an eclipse as
at mid-eclipse, although the moon’s latitude is always increasing or diminish-
ing, and therefore the zones of immersion and emersion are not absolutely
equal. On the other hand, the difference between them is so slight that it would
seem to be a useless waste of time to investigate these details with greater pre-
cision. In the foregoing way the times, durations, and sizes of eclipses are ex-
plained by reference to the diameters.

But in the opinion of many astronomers, the portions in eclipse should be
determined by reference to surfaces, not diameters, since surfaces are eclipsed,
not lines. Accordingly let the circle of the sun or shadow be ABCD, with its
center 1s at E. Let the moon’s circle be AFCG, with its center at I. Let these
two circles intersect each other at points A and C. Through both centers draw
the straight line BEIF. Join AE, EC, Al, and IC. Draw AKC perpendicular to
BF. From these circles we wish to determine the size of the eclipsed surface
ADCG, or the number of twelfths of the whole plane of the circle of the sun or
moon when partially eclipsed.

Then, from what was said above, AE and Al, the radii of both circles are

given. So is EI, the distance between their centers = the moon’s latitude.

Hence in triangle AEI we have the sides given, and therefore the angles are
given, by what was proved above. EIC is similar and equal to AEIL Conse-
quently arcs ADC and AGC will be given in degrees of which the circumfer-

ence of a circle = 360°. According to the Meas-

urement of the Circle by Archimedes of

B

Syracuse, the ratio of the circumference to the
diameter is less than 3% but more than 31%71.
Between these two values Ptolemy assumes a
ratio of 3P 8'30":1P. On the basis of this ratio,
arcs AGC and ADC will be known also in
the same units as their diameters, or as AE
and Al. The areas contained under EA and
AD, and under IA and AG, are equal to sec-
tors AEC and AIC, respectively.

But in the isosceles triangles AEC and

AIC, the common base AKC is given, and so
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are the perpendiculars EK and KI. Then the product of AK x KE is given as
the area of triangle AEC, just as the product of AK x KI = the area of triangle
ACI. Subtracting both triangles from their sectors leaves as remainders AGC
and ACD as segments of the circles. These segments make known the whole of
ADCG, which was sought. Also given is the entire circular area, which is de-
fined by BE and BAD in a solar eclipse, or by FI and FAG in a lunar eclipse.
Hence it will become clear how many twelfths of the whole circle, either the
sun’s or the moon’s, will be occupied by ADCG, the eclipsed area.

With regard to the moon, let the foregoing discussion, which has been
treated more fully by other astronomers, suffice for the present. For I am hurry-
ing on to the revolutions of the other five bodies, which will be the subject of

the following Books.

End of the fourth book of the Revolutions.
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Nicolaus Copernicus

Revolutions
Book Five

Thus far to the best of my ability I have discussed the earth’s revolution around
the sun [Book III], and the moon’s revolution around the earth [Book IV].
Now I tackle the motions of the five planets. The order and size of their spheres
are connected with remarkable agreement and precise symmetry by the earth’s
motion, as I indicated generally in Book I [ch. 9], when I showed that the
centers of these spheres are not near the earth, but rather near the sun. It there-
fore remains for me to prove all these statements one at a time and more clearly,
and to fulfill my promises as well as I can. In particular I shall utilize observa-
tions of phenomena, which I have taken not only from antiquity but also from
our own times, and by which the theory of those motions is made more certain.

In Plato’s Timaeus these five planets are each named according to its as-
pect. Saturn is called “Phaenon,” as though you were to say “bright” or “visible,”
for it is invisible less than the others, and emerges sooner after being blotted
out by the sun. Jupiter is called “Phaeton” from its brilliance. Mars is called
“Pyrois” from its fiery splendor. Venus is sometimes called “Phosphorus,” some-
times “Hesperus,” that is, “Morning Star” and “Evening Star,” according as it
shines in the morning or evening. Finally, Mercury is called “Stilbon,” on ac-
count of its twinkling and shimmering light.

These bodies move in longitude and latitude with greater irregularity than

does the moon.

The revolutions and mean motions [of the planets]. Chapter 1.

‘Two entirely different motions in longitude appear in them. One is caused by
the earth’s aforementioned motion, and the other is each one’s own proper
motion. I have decided without any impropriety to call the first one a parallac-
tic motion, since it is this which makes the stations, [resumptions of] direct

motion, and retrogradations

appear in all of them. These phenomena appear, not because the planet, which
always moves forward with its own motion, is erratic in this way, but because a
sort of parallax is produced by the earth’s motion according as it differs in size

from those spheres.

263 Nicolaus Copernicus. De Revolutionibus Orbium Ceelestium, Libri VI. Nuremberg, 1543. THE WARNOCK LIBRARY

page 133v

page 134r



Clearly, then, the true places of Saturn, Jupiter, and Mars become visible to
us only when they rise at sunset. This happens about the middle of their retro-
gradations. For at that time they coincide with the straight line through the
mean place of the sun [and earth], and are unaffected by that parallax. For
Venus and Mercury, however, a different relation prevails. For when they are in
conjunction with the sun, they are completely blotted out, and are visible only
while executing their elongations to either side of the sun, so that they are
never found without this parallax. Consequently each planet has its own indi-
vidual parallactic revolution, I mean, terrestrial motion in relation to the planet,
which these two bodies perform mutually.

I say that the motion in parallax is nothing but the difference by which the
earth’s uniform motion exceeds their motion, as in the cases of Saturn, Jupiter,
and Mars, or is exceeded by it, as in the cases of Venus and Mercury. But these
parallactic periods are found to be nonuniform with an obvious irregularity.
The ancients accordingly recognized that the motions of these planets were
likewise nonuniform, and their circles had apsides to which their nonuniformity
returned. They believed that the apsides possessed permanent places in the
sphere of the fixed stars. This consideration opened the way to mastering the
planets’ mean motions and uniform periods. For when they had a record of the
place of a planet at a precise distance from the sun and a fixed star, and learned
that after an interval of time the planet had arrived at the same place at a
similar distance from the sun, the planet was seen to have passed through its
entire irregularity and to have returned through all its aspects to its former
relation with the earth. Thus by means of the intervening time they computed
the number of whole uniform revolutions, and thereby the detailed motions of
the planet.

These revolutions were reported by Ptolemy [Synzaxis, IX, 3] in terms of
solar years, as he states that he received them from Hipparchus. But he wants
solar years to be understood as measured from an equinox or solstice. Such
years, however, it has now become quite clear, are not entirely uniform. There-
tore I shall use those which are measured by the fixed stars. By means of these
years I have also redetermined the motions of these five planets with greater

accuracy, in accordance with my findings that in our time
they lacked something or were in excess, as follows.
In what I have called the parallactic motion, the earth returns to Saturn 57

times in 59 of our solar years, plus 1 day, 6 day-minutes, and about 48 day-

264 Nicolaus Copernicus. De Revolutionibus Orbium Ceelestium, Libri VI. Nuremberg, 1543. THE WARNOCK LIBRARY

page 134v




seconds; in that time the planet completes 2 revolutions plus 1°6” 6" in its own
motion. Jupiter is passed by the earth 65 times in 71 solar years, minus 5 days, 45
day-minutes, 27 day-seconds; in that time the planet revolves 6 times minus 5°
41" 2% in its own motion. For Mars the parallactic revolutions are 37 in 79 solar
years, 2 days, 27 day-minutes, 3 day-seconds; in that time the planet completes
42 periods plus 2° 24" 56" in its own motion. Venus passes the moving earth ;5
times in 8 solar years minus 2 days, 26 day-minutes, 46 day-seconds; in this
period it revolves around the sun 13 times minus 2° 24" 40”. Finally in 46 solar
years, plus 34 day-minutes, 23 day-seconds, Mercury completes 145 parallactic
revolutions, in which it overtakes the moving earth, with which it revolves around
the sun, 191 times plus 31" and about 23”. For each planet, therefore, one paral-
lactic revolution takes, for:

Saturn 378 days 5 day-minutes 32 day-seconds 11 day-thirds

Jupiter 398 23 2 56
Mars 779 56 19 7

Venus 583 55 17 24
Mercury 115 52 42 12

When we convert the foregoing figures to the degrees of a circle multiplied
by 365, and then divide this product by the [given] number of days and frac-

tions of days, we will have the annual motion for

Saturn  347° 32 2"’ 54777 "

Jupiter 329 25 8 15 6

Mars 168 28 29 13 12

Venus 22§ I 48 54 30

Mercury 53 56 46 54 40, after 3 revolutions.

Of the above values, ¥360dis the daily motion for

Saturn pe . s o
Jupiter 54 9 3 49
Mars 27 41 40 8
Venus 36 59 28 35
Mercury 3° 6 24 7 43,

as set forth in the following Tables, on the model of the Tables of the Mean
Motions of the Sun and Moon [following III, 14 and IV, 4]. However, I thought
it unnecessary to tabulate in this manner the planets’ proper motions. For these
are obtained by subtracting the tabulated motions from the sun’s mean motion,

into which they enter as a component, as I said [earlier in V, 1]. Nevertheless, if
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anybody is dissatisfied with these arrangements, he may make the other table if
he so wishes. For, the annual proper motion with respect to the sphere of the

fixed stars is for

Saturn 12° 2’ 46”7 '’ 52777
Jupiter 30 19 40 51 58
Mars 191 16 19 53 52

But for Venus and Mercury, since [their annual proper motion] is not apparent
to us, the sun’s motion is used and furnishes a method of determining and

demonstrating their appearances, as indicated below.

Saturn’s Parallactic Motion in Years and Periods of Sixty Years
Christian Era 205° 49°
Egyp- Motion Egyp- Motion
tian tian
Years | 60° ° ‘ " Years | 60° °
I s | 47 | 32| 3 9 3t | s | 33| 3 | 37| 59
2 5 35 4 6 19 32 5 21 5 41 9
3 5 22 | 36 9 29 33 5 8 37 | 44 | 19
4 5 10 8 | 38 34 4 56 9 47 | 28
5 4 57 | 40 15 48 35 4 43 41 | 50 | 38
6 4 45 | 12 | 18 | 38 36 4 3t | 13 | 53 | 48
7 4 32 | 44 | 22 7 37 4 8 | 45 | 56 | 57
3 4 20 16 25 7 38 4 6 18 o 7
9 4 7 48 | 28 | 27 39 3 53 | 50 3 17
10 3 55 20 31 36 40 3 41 22 6 26
I 3 42 | 52 | 34 | 46 41 3 28 | 54 9 36
12 3 30 24 37 56 42 3 16 26 12 46
13 3 17 | 56 | 41 5 43 3 3 8 | 15 | 55
4 3 5 28 | 44 15 44 2 st | 30 19 5
15 2 53 o 47 25 45 2 39 2 22 15
16 2 40 32 50 34 46 2 26 34 25 24
17 2 28 4 53 | 44 47 2 14 6 28 | 34
18 2 15 36 56 54 48 2 I 38 31 44
19 | 2 3 9 o 3 49 | 1 | 49 | 0 | 34 | 53
20 I 50 41 3 3 50 I 36 42 38 3
21 I 38 13 6 23 51 I 24 4 41 13
22 I 25 45 9 32 52 I I 46 44 22
23 I 13 17 12 42 53 o 59 18 47 32
24 I o 49 15 52 54 o 46 50 50 42
25 o 48 21 19 I 55 o 34 22 53 51
26 o 35 53 22 11 56 o 21 54 57 I
27 o 23 25 25 21 57 o 9 27 o I
28 o 10 57 28 30 58 5 56 59 3 20
29 | 5 | 58 | 29 | 31 | 40 50 | 5 | 44 | 3t | 6 | 30
30 5 46 I 34 | 50 60 5 32 3 9 40
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Saturn’s Parallactic Motion in Days, Periods of Sixty Days,

and Fractions of Days

Motion Motion
Days | 60° ° Days | 60° °
I o o 57 7 44 3t o 29 30 59 46
2 o I 54 15 28 32 o 30 28 7 30
3 o 2 51 23 2 33 o 31 25 15 4
4 o 3 48 30 56 34 o 32 22 22 58
5 o 4 45 38 40 35 o 33 19 30 42
6 o 5 42 46 24 36 o 34 16 38 26
7 o 6 39 | 54 8 37 o 35 | B | 46 I
8 ° 7 37 I 52 38 o 36 | 0 | 53 | 55
9 o 8 34 9 36 39 o 37 8 I 39
10 o 9 31 7 20 40 o 38 5 9 23
I o 10 28 25 4 41 o 39 2 17 7
12 o I 25 32 49 42 o 39 59 27 51
3 o 2 22 40 33 43 o 40 56 32 35
4 | o B3 | 19 | 48 | 17 44 | o | 41 | 53 | 40 | 19
15 o 14 16 56 I 45 o 42 50 48 3
16 o 5| 14 3 45 46 o | 43 | 47 | 5 | 47
17 o 16 I 11 29 47 o 44 45 3 31
18 o 17 8 19 13 48 o 45 42 II 16
19 o 18 5 26 | 57 49 o 46 | 39 | 19 o
20 o 19 2 34 41 50 o 47 36 26 44
21 o 19 59 | 42 25 5t o 48 | 33 34 | 28
22 o 20 56 50 9 52 o 49 30 42 2
23 o 2t | 53 | 57 | 53 53 o 50 | 27 | 49 | 36
24 o 22 51 5 38 54 o 5T 24 57 40
25 o 23 48 13 22 55 o 52 22 5 24
26 o 24 45 21 6 56 o 53 19 13 8
27 o 25 42 28 50 57 o 54 16 20 52
28 o 26 39 36 34 58 o 55 13 28 36
29 o 27 36 44 18 59 o 56 10 36 20
30 o 28 | 33 | 52 2 6o | o 57 7 44 5
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Jupiter’s Parallactic Motion in Years and Periods of Sixty Years

Christian Era 98°16~

Egyp- Motion Egyp- Motion

tian tian

Years | 60° ° Years | 60° °
I 5 29 25 8 15 31 2 I 59 15 48
2 4 58 50 16 30 32 I 41 24 24 3
3 4 28 15 24 | 45 33 I 0 | 49 | 32 18
4 3 57 40 33 o 34 o 40 4 40 33
5 3 27 5 41 15 35 o 9 39 | 48 | 48
6 2 56 | 30 | 49 | 30 36 5 39 4 57 3
7 2 25 55 57 45 37 5 8 30 5 18
8 1 55 | a1 6 o 38 4 37 | 55 | B | 33
9 I 24 46 14 15 39 4 7 20 2I 48
10 o 54 I 22 31 40 3 36 45 30 4
11 o 23 36 30 46 41 3 6 10 38 19
12 5 53 I 39 I 42 2 35 35 46 34
13 5 22 26 47 16 43 2 5 o 54 49
14 4 st | st | 55 31 44 I 34 | 26 3 4
15 4 21 17 3 46 45 I 3 5T I 19
16 3 50 42 12 I 46 o 33 16 19 34
17 3 20 7 20 16 47 o 2 41 27 49
18 2 49 | 32 28 3 48 5 32 5 36 4
19 2 B | 57 | 36 | 46 49 5 I 3L | 44 | 19
20 I 48 22 45 2 50 4 30 56 52 34
21 I 17 47 53 7 51 4 o 22 o 50
22 o 47 3 I 32 52 3 29 47 9 5
23 o 16 38 9 47 53 2 59 2 17 20
24 5 46 3 18 2 54 2 28 | 37 | 25 | 35
25 5 15 28 26 17 55 I 58 2 33 50
26 | 4 | 44 | 53 | 34 | 32 56 I 27 | 27 | 42 5
27 4 14 18 42 47 57 o 56 52 50 20
28 3 43 | 43 | st 2 58 o | 26 | 17 | 8 | 35
29 3 13 8 59 | 17 59 5 55 | 43 6 50
30 2 42 | 34 7 33 60 5 25 8 15 6
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Jupiter’s Parallactic Motion in Days, Periods of Sixty Days,

and Fractions of Days

Motion Motion
Days | 60° ° Days | 60° °
I o o 54 9 3 3r o 27 | 8 | 40 | 58
2 o I 48 18 7 32 o 28 52 50 2
3 o 2 42 | 27 | @ 33 o 29 | 46 | 59 5
4 o 3 36 | 36 | 15 34 o | 30 | 41 8 9
5 o 4 30 45 19 35 o 3T 35 17 13
6 o 5 24 54 22 36 o 32 29 26 17
7 o 6 19 3 26 37 o 33 | 23 | 35 | 2
8 o 7 13 12 30 38 o 34 17 44 25
9 o 8 7 21 34 39 o 35 I 53 29
10 o 9 I 30 38 40 o 36 6 2 32
I o 9 55 | 39 | 41 41 o 37 o |36
12 o | 10 | 49 | 48 | 45 42 | o | 37 | 54 | 20 | 40
13 o I 43 57 49 43 o 38 48 29 44
4 o 2 | 38 6 53 44 o 39 | 42 | 38 | 47
15 o 3| 32 | 15 |5 45 o | 40 | 36 | 47 | 51
16 o 14 26 25 I 46 o 41 30 56 55
17 0 15 20 34 4 47 o 42 25 5 59
18 o 16 14 43 8 48 o 43 19 15 3
19 o 17 8 52 2 49 o 44 13 24 6
20 o 18 3 I 16 50 o 45 7 33 10
21 o) 18 57 10 20 51 o 46 I 42 4
22 o) 19 51 19 23 52 o 46 55 51 18
23 o 20 45 28 27 53 o 47 50 o 22
24 o 2t | 39 | 37 | 3T 54 o 48 | 44 9 26
25 o 22 | 33 46 | 35 55 o 49 | 38 18 29
26 o 23 | 27 | 55 | 39 56 o 50 | 32 | 27 | 33
27 0 24 22 4 43 57 o 5T 26 36 37
28 o 25 16 13 46 58 o 52 20 45 41
29 o 26 Io 22 50 59 o 53 14 54 45
30 o 27 4 3t 54 60 o 54 9 3 49
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Mars’ Parallactic Motion in Years and Periods of Sixty Years
Christian Era 238° 22"

Egyp- Motion Egyp- Motion

tian tian

Years | 60° ° Years | 60° °
I 2 48 28 30 36 31 3 2 43 48 38
2 5 36 57 I 12 32 5 51 12 19 4
3 2 25 25 3t 48 33 2 39 40 49 50
4 5 13 54 2 24 34 5 28 9 20 26
5 2 2 22 33 o 35 2 16 37 I3 2
6 4 50 | st 3 36 36 5 5 6 ar | 38
7 I 39 19 34 12 37 I 53 34 52 4
8 4 27 48 4 48 38 4 42 3 22 50
9 I 16 16 35 24 39 I 30 31 53 26
10 4 4 45 6 o 40 4 19 o 24 2
11 o 53 13 36 36 41 I 7 28 54 38
12 3 41 42 7 12 42 3 55 57 25 4
13 o 30 | 10 37 | 48 43 o 44 | 25 55 50
14 3 B8 | 39 8 24 44 3 32 | 54 | 26 | 26
15 o 7 7 39 I 45 o 21 22 57 3
16 2 55 | 36 9 37 46 3 9 51 27 | 39
17 5 44 4 40 | 13 47 5 58 19 | 58 15
18 2 32 33 10 49 48 2 46 48 28 5I
19 5 21 I 41 | 25 49 5 35 | 16| 59 | 27
20 2 9 30 12 I 50 2 23 45 30 3
21 4 57 58 42 37 51 5 12 14 0 39
22 I 46 27 13 13 52 2 o 42 31 15
23 4 34 55 43 49 53 4 49 I I 51
24 I 23 24 14 25 54 I 37 39 32 27
25 4 | 52 | 45 I 55 4 | 26 8 3 3
26 I o 21 15 37 56 I 14 36 33 39
27 3 48 | 49 | 46 | 1B 57 4 3 5 4 15
28 o 37 | 18 | 16 | 49 58 o St | 33 | 34 | st
29 3 25 | 46 | 47 | 25 59 3 40 2 5 27
30 o 14 15 18 2 60 o 28 30 36 4
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Mars’ Parallactic Motion in Days, Periods of Sixty Days,

and Fractions of Days

Motion Motion
Days | 60° ° Days | 60° °
I o o 27 41 40 31 o 14 18 31 5I
2 o o 55 23 20 32 o 14 46 13 31
3 o I 23 5 I 33 o 15 14 55 12
4 o I 50 46 41 34 o 15 41 36 52
5 o 2 18 28 21 35 o 16 9 18 32
6 o 2 46 10 2 36 o 16 37 o 13
7 o 3 13 5t 42 37 o 17 4 41 53
8 o 3 41 33 22 38 ° 17 32 23 33
9 o 4 9 15 3 39 o 18 0 5 4
10 o 4 36 56 43 40 o 18 27 46 54
I o 5 4 38 24 41 o 18 55 28 35
12 o 5 32 20 4 42 o 19 23 10 15
13 o 6 o I 44 43 o 19 | 50 | 51 | 55
14 o 6 27 43 25 44 o 20 18 33 36
15 o 6 55 25 5 45 o 20 46 15 16
16 o 7 23 6 45 46 o 21 13 56 56
17 o 7 50 48 26 47 o 21 41 38 37
18 o 8 18 30 6 48 o 22 9 20 17
19 o 8 46 11 47 49 o 22 37 I 57
20 o 9 13 53 27 50 o 23 4 43 38
21 o 9 41 35 7 51 o 23 32 25 18
22 o 10 9 16 48 52 o 24 o 6 59
23 o 10 36 58 28 53 o 24 27 48 39
24 o Ir 4 40 8 54 o 24 | 55 | 30 | 19
25 o I 32 21 49 55 o 25 23 12 o
26 o 12 o 3 29 56 o 25 50 53 40
27 o 12 27 45 9 57 o 26 18 35 20
28 o 12 55 26 49 58 o 26 46 17 I
29 o 13 23 8 30 59 o 27 13 58 41
30 o 13 50 50 11 60 o 27 41 40 22
271 Nicolaus Copernicus. De Revolutionibus Orbium Ceelestium, Libri VI. Nuremberg, 1543. THE WARNOCK LIBRARY

page 138r



Venus’ Parallactic Motion in Years and Periods of Sixty Years page 138v
Christian Era 126° 45
| ] 1 -
Egyp- Motion Egyp- Motion e T
tian tian =-4 Sl &
Years | 60° ° " Years | 60° ° ’ " e ]

1 3 | 45 | 1 | 45 | 3 31 | 2 | 15 | 54 | 16 | 83

2 I 30 3 30 7 32 o o 56 I 57

3 5 |15 | s | 5| om B3| 3 | 45 | 57 | 47| 1

4 3 o 7 o | 14 34 | 1 | 30| 59 | 32 | 4

5 o | 45 8 45 | 18 35 5 16 I 17 8

6 4 30 10 30 22 36 3 I 3 2 12

7 2 13 12 15 25 37 o 46 4 47 | 55

8 o o 14 o 29 38 4 3I 6 32 19

9 3 45 | 15| 45 | 33 39 2 16 8 17 | 23

10 I 30 17 30 36 40 o I 10 2 26

153 5 15 19 15 40 41 3 46 I 47 30

2 3 o 21 o 44 42 I 31 3 32 34

13 o 45 | 22 | 45 | 47 43 5 6 | 15 | 17 | 37

4 | 4 | 30 | 24 | 30 | st 44 | 3 1 17 2 | 41

15 2 5| 26 | 15 55 45 o 46 | B | 47 | 45

16 o o 28 o 58 46 4 31 20 32 48

17 3 45 29 46 2 47 2 16 22 17 52

18 I 30 31 31 6 48 o I 24 2 56

19 5 5| 33 | 16 9 49 3 46 | 25 | 47 | 59
20 | 3 o | 35 | 1 | 1 so | 1 | 3t | 27 | 33| 3

21 o 45 36 46 17 51 5 16 29 18 7

22 4 30 38 31 20 52 3 I 3I 3 10

23 2 15 40 16 24 53 o 46 32 48 14

24 o o 42 1 28 54 4 3t | 34 | 33 18

25 3 45 | 43 | 46 | 31 55 2 6 | 36 | 18 21

26 I 30 | 45 | 3t | 35 56 o I 38 3 25

27 5 5| 47 | 16 | 39 57 3 46 | 39 | 48 | 29

28 3 o 49 I 42 58 I 3I 41 33 32

29 o 45 | 50 | 46 | 46 59 5 16 | 43 | 1B | 36
30 | 4 | 30 | 52 | 3t | 50 6o | 3 1| 45 | 3 | 40
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Venus’ Parallactic Motion in Days, Periods of Sixty Days,

and Fractions of Days

Motion Motion
Days | 60° ° Days | 60° °
I o o 36 59 28 31 o 19 6 43 46
2 o I 3 58 57 32 o 19 | 43 43 14
3 o I 50 58 25 33 o 20 20 42 43
4 o 2 27 57 54 34 o 20 57 42 I
5 o 3 4 | 57 | 22 35 o 2 | 34 | 41 | 40
6 o 3 41 56 51 36 o 22 11 41 9
7 o 4 18 56 20 37 o 22 48 40 37
8 o 4 55 | 55 | 48 38 o 23 | 25 | 40 | 6
9 o 5 32 55 17 39 o 24 2 39 34
10 o 6 9 54 | 45 40 o 24 | 39 | 39 3
11 o 6 46 54 14 41 o 25 16 38 31
12 ° 7 23 53 43 42 o 25 53 38 o
13 o 8 o 53 11 43 o 26 30 37 29
14 o 8 37 | 52 | 40 44 | o 27 7 36 | 57
15 o 9 4 | 52 8 45 o 27 | 44 | 36 | 26
16 o 9 5I 51 37 46 o 28 21 35 54
17 o 10 28 5I 5 47 o 28 58 35 23
18 o I 5 50 34 48 o 29 35 34 52
19 o I 42 50 2 49 o 30 12 34 20
20 o 2 19 49 3t 50 o 30 49 33 49
21 o 12 56 48 59 5I o 31 26 33 17
22 o 13 33 48 28 52 o 32 3 32 46
23 o 4 10 47 57 53 o 32 40 32 4
24 o 14 | 47 | 47 | 26 54 o 33 7 | 31| 43
25 o 15 24 46 54 55 o 33 54 3t 12
26 o 16 I 46 23 56 o 34 31 30 40
27 o 16 | 38 | 45 | 51 57 o 35 8 30 9
28 o 17 15 45 20 58 o 35 45 29 37
29 o 17 52 44 48 59 o 36 22 29 6
30 o 18 29 44 17 60 o 36 59 28 35
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Mercury’s Parallactic Motion in Years and Periods of Sixty Years page 139v
Christian Era 46° 24”
Egyp- Motion Egyp- Motion b g |,-.
tian tian e il
Years 600 o , ,r s Years 600 o B . srs [
I o 31 57 | 23 6 3 3 52 | 38 | 56 | 21
2 1 47 | 54 | 46 | 13 32 4 46 | 36 | 19 | 28
3 2 41 | 52 9 19 33 5 40 | 33 | 42 | 34
4 3 35 | 49 | 32 | 26 34 o 34 | 3t 5 41
5 4 29 | 46 | 55 | 32 35 I 28 | 28 | 28 | 47
6 5 23 | 44 | 1B | 39 36 2 22 | 25 | 5T | 54
7 o I7 | 4T | 41 | 45 37 3 16 | 23 15
8 I II 39 4 52 38 4 10 20 38 7
9 2 5 36 | 27 | 38 39 5 4 18 I 13
10 2 59 | 33 | st 5 40 5 58 I5 | 24 | 20
11 3 53 31 14 11 41 o 52 12 47 26
12 4 47 28 37 18 42 I 46 10 10 33
13 5 41 | 26 o 24 43 2 40 7 33 | 39
14 o 335 | 23 | 23 | 3¢ 44 3 34 4 56 | 46
15 I 29 20 46 37 45 4 28 2 19 52
16 2 23 | 18 9 44 46 5 21 | 59 | 42 | 59
17 3 17 | 15 | 32 | 50 47 | © 5 | 57 6 5
18 4 11 12 55 57 48 I 9 54 29 12
19 5 5 0 | 19 3 49 2 3 st | 52 | 18
20 5 59 7 42 | 10 50 2 57 1 49 | 1 25
21 o 53 5 5 16 st 3 St | 46 | 38 | 31
22 1 47 2 28 23 52 4 45 | 44 I 38
23 2 | 40 | 59 | 5t | 29 53 5 39 | 41 | 24 | 44
24 3 34 | 57 | 14 | 36 54 o 3 38 | 47 | st
25 4 28 | 54 | 37 | 42 55 I 27 | 36 | 10 | 57
26 5 22 | 52 o 49 56 2 2t | 33 | 34 4
27 o 16 | 49 | 23 55 57 3 15 | 30 | 57 | 10
28 I 10 46 47 2 58 4 9 28 20 17
29 2 4 44 | 10 8 59 5 3 25 43 23
30 2 8 | 41 | 33 15 60 5 57 | 23 6 30
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Mercury’s Parallactic Motion in Days, Periods of Sixty Days,
and Fractions of Days
Motion Motion
Days | 60° ° Days | 60° °

I o 3 6 24 13 31 I 36 18 31 3
2 o 6 2 48 27 32 I 39 24 55 17
3 o 9 19 2 41 33 I 42 31 19 31
4 o 2 | 25 | 36 | 54 34 I 45 | 37 | 43 | 44
5 ° 15 32 I 8 35 I 48 | 44 7 58
6 o 18 38 25 22 36 I 51 50 32 12
7 o 2 | 44 | 49 | 35 37 I 54 | 56 | 56 | 25
8 o 24 | 5T 13 49 38 I 58 3 20 | 39
9 o 27 | 57 | 38 3 39 2 I 9 44 | 53
10 o 31 4 2 16 40 2 4 16 9 6
11 o 34 10 26 30 41 2 7 22 33 20
2 o 37 16 50 44 42 2 10 28 57 34
3 o 40 23 14 57 43 2 3 35 21 47
14 o 43 29 39 I 44 2 16 41 46 I
15 o 46 36 3 25 45 2 19 48 10 15
16 o 49 42 27 38 46 2 22 54 34 28
7 o 52 48 51 52 47 2 26 o 58 42
18 o 55 55 16 6 48 2 29 7 22 56
19 o 59 I 40 19 49 2 32 3 47 9
20 o 8 4 33 50 2 35 20 I 23
21 o 14 28 47 5I 2 38 26 35 37
22 o 8 20 53 o 52 2 41 32 59 50
23 o oo 27 | 17| 14 53 2 | 44 | 39 | 24 | 4
24 ) 14 33 41 28 54 2 47 45 48 18
25 o) 17 40 5 41 55 2 50 52 2 31
26 o 20 | 46 | 29 | 55 56 2 53 | 58 | 36 | 45
27 0 23 52 54 9 57 2 57 5 0 59
28 o 26 59 18 22 58 3 o 11 25 12
29 o 30 5 42 | 36 59 3 3 17 | 49 | 26
30 o 33 I2 6 50 60 3 6 24 13 40

The planets’ uniform and apparent motion, as explained by the theory of the
ancients. Chapter 2.
Their mean motions occur as set forth above. Now let me turn to their
nonuniform apparent motion. The ancient astronomers [for example, Ptolemy,
Syntaxis,IX, 5], who regarded the earth as stationary, imagined an eccentrepicycle
for Saturn, Jupiter, Mars, and Venus, as well as another eccentric, in relation to
which the epicycle moved uniformly, and so did the planet on the epicycle.
Thus, let AB be an eccentric circle, with its center at C. Let the diameter be
ACB, on which the center of the earth is D, so that the apogee is in A, and the
perigee in B. Bisect DC at E. With E as center, describe a second eccentric FG,
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equal to the first eccentric [AB]. Anywhere on FG 7

take H as center, and describe epicycle IK. Through : ,:::"]:l N,
its center draw straight line IHKC, and likewise Jl,\i‘,\ & l N
LHME. Let the eccentrics be understood to be in- [ = “-:'t“.f '~|f: I\:jl
clined to the plane of the ecliptic, and the epicycle ‘-.\ 1 : /:J
to the plane of the eccentric, on account of the lati- \“‘u-__ | //:,
tudes displayed by the planet. Here, however, to sim- ST -'d — =

plify the explanation, [let all these circles] lie in one
plane. This whole plane, according to the ancient astronomers, together with
points E and C, moves around D, the center of the ecliptic, with the motion of
the fixed stars. Through this [arrangement] they wish it to be understood that
these points have unalterable places in the sphere of the fixed stars, while the
epicycle also moves eastward on circle FHG but is regulated by line IHC, with
reference to which the planet also revolves uniformly on epicycle IK.

The motion on the epicycle, however, clearly should be uniform with re-
spect to E, the center of its deferent, and the planet’s revolution should be
uniform with respect to line LME. Here too, then, as they admit, a circular
motion can be uniform with respect to an extraneous center not its own, a
concept of which Scipio in Cicero would hardly have dreamed. And now in the
case of Mercury the same thing is permitted, and even more. But (in my opin-
ion) I have already adequately refuted this idea in connection with the moon
[IV, 2]. These and similar situations gave me the occasion to consider the mo-
tion of the earth and other ways of preserving uniform motion and the princi-
ples of the science, as well as of making the computation of the apparent

nonuniform motion more enduring.

General explanation of the apparent nonuniformity caused by the earth’s
motion. Chapter 3.
There are two reasons why a planet’s uniform motion appears nonuniform: the
earth’s motion, and the planet’s own motion. I shall explain each of the
nonuniformities in general and separately with a visual demonstration, in order
that they may be better distinguished from each other. I shall begin with the
nonuniformity which is intermingled with them all on account of the earth’s
motion, and I shall start with Venus and Mercury, which are enclosed within
the earth’s circle.

Let circle AB, eccentric to the sun, be described by the earth’s center in the

annual revolution as set forth above [III, 15]. Let AB’s center be C. Now let us
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assume that the planet has no irregularity other than
that which it would have if we made it concentric
with AB. Let the concentric be DE, either Venus’
or Mercury’s. On account of their latitude DE must

be inclined to AB. But for the sake of an easier

explanation, let them be conceived in the same

plane. Put the earth in point A, from which draw
lines of sight AFL and AGM, tangent to the planet’s circle at points F and G.
Let ACB be a diameter common to both circles.

Let both bodies, I mean, the earth and the planet, move in the same direc-
tion, that is, eastward, but let the planet be faster than the earth. Hence C and
line ACB will appear to an observer traveling with A to move with the sun’s
mean motion. On the other hand, on circle DFG, as though it were an epicy-
cle, the planet will traverse arc FDG eastward in more time than the remaining
arc GEF westward. In arc FDG it will add the entire angle FAG to the sun’s
mean motion, while in arc GEF it will subtract the same angle. Therefore,
where the planet’s subtractive motion, especially near perigee E, exceeds C’s
additive motion, to the extent of that excess it seems to [the observer in] A to
retrograde, as happens in these planets. In their cases, line CE:line AE > A’s
motion:planet’s motion, according to the theorems of Apollonius of Perga, as
will be mentioned hereafter [V, 35]. But where the additive motion equals the

subtractive (counteracting each other),

the planet will seem stationary, all these aspects being in agreement with the
phenomena.

Therefore, if there were no other irregularity in the planet’s motion, as
Apollonius thought, these constructions could be sufficient. But these planets’
greatest elongations from the sun’s mean place in the mornings and evenings,

as indicated by angles FAE and GAE, are not found

everywhere equal. Nor is either one of these greatest

elongations equal to the other, nor are their sums
equal to each other. The inference is obvious that
they do not move on circles concentric with the

earth’s, but on certain other circles by which they

produce a second inequality.
The same conclusion is proved also for the three outer planets, Saturn,

Jupiter, and Mars, which completely encircle the earth. Reproduce the earth’s
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circle from the preceding diagram. Assume DE outside it and concentric with
it in the same plane. On DE put the planet at any point D, from which draw
straight lines DF and DG tangent to the earth’s circle at points F and G, and
[also draw] DACBE, the diameter common [to both circles]. On DE, the line
of the sun’s motion, the true place of the planet, when it rises at sunset and is
closest to the earth, will obviously be visible (only to an observer at A). For
when the earth is at the opposite point B, although the planet is on the same
line, it will not be visible, having become blotted out on account of the sun’s
closeness to C. But the earth’s travel exceeds the planet’s motion. Hence through-
out the apogeal arc GBF it will appear to add the whole angle GDF to the
planet’s motion, and to subtract it in the remaining arc FAG, but for a shorter
time, FAG being a smaller arc. Where the earth’s subtractive motion exceeds
the planet’s additive motion (especially around A), the planet will seem to be
left behind by the earth and to move westward, and to stand still where the
observer sees the least difference between the opposing motions.

Thus all these phenomena, which the ancient astronomers sought [to ex-
plain] by means of an epicycle for each planet, happen on account of the single
motion of the earth, as is again clear. Contrary to the view of Apollonius and
the ancients, however, the planet’s motion is not found uniform, as is pro-
claimed by the earth’s irregular revolution with respect to the planet. Conse-
quently the planets do not move on a concentric, but in another way, which I

shall also explain next.

In what ways do the planets’ own motions appear nonuniform? Chapter 4.
Their own motions in longitude have almost the same pattern, with the excep-
tion of Mercury, which seems to differ from them. Hence those four will be
discussed together, and a separate place reserved for Mercury. Whereas the
ancients put a single motion on two eccentrics, as has been recalled [V, 2], I
think that there are two uniform motions of which the apparent nonuniformity
is composed: either an eccentreccentric or an epicyclepicycle or also a mixed
eccentrepicycle, which can produce the same nonuniformity, as I proved above
in connection with the sun and moon [III, 20; IV, 3].

Thus, let AB be an eccentric circle, with center C. Let the diameter ACB,
drawn through the planet’s higher and lower apse, be the line of the sun’s mean
place. On ACB let D be the center of the earth’s circle. With the higher apse A
as center, and radius = % of distance CD, describe epicyclet EF. In F, its peri-
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gee, place the planet. Let the epicyclet move eastward along the eccentric AB.

Let the planet likewise move eastward on the epicyclet’s upper circumference,

and westward on the rest of the circumference. Let the revolutions of both, I
mean, the epicyclet and the planet, be equal to each other. It will therefore
happen that with the epicyclet in the eccentric’s higher apse, and the planet on
the contrary in the epicyclet’s perigee, when each of them has completed its
semicircle, they change their relation to each other to the opposite. But at both
quadratures midway between [the higher and lower apsides], each will be at its
middle apse. Only in the former cases [higher and lower apsides], will the
epicyclet’s diameter lie on the line AB. Moreover, at the midpoints [between
the higher and lower apsides, the epicyclet’s diameter] will be perpendicular to
AB. Elsewhere it always swings toward and away [from AB]. All these phe-
nomena are easily understood from the sequence of the motions.

Hence it will also be demonstrated that by this composite motion the planet
does not describe a perfect circle. [ This departure from perfect circularity] is in
conformity with the thinking of the ancient astronomers, yet the difference is
imperceptible. Reproducing the same epicyclet, let it be KL, with center B.
Taking AG as a quadrant of the circle, with G as center draw epicyclet HI.
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Trisecting CD, let %3 CD = CM = GI. Join GC and IM, which intersect each
other in Q. Hence, arc AG is similar to arc HI by construction. ACG being a
right angle, HGI is therefore also a right angle. Furthermore, the vertical an-
gles at Q are likewise equal. Consequently triangles GIQ and QCM are equi-
angular. But their corresponding sides are also equal, since by hypothesis base
GI = base CM. Side QI > GQ, just as also QM > QC. Therefore, the whole of
IQM > the whole of GQC. But FM = ML = AC = CG. Then, the circle drawn
around M as center through points F and L = circle AB, and will intersect line
IM. The demonstration will proceed in the same way in the other quadrant
opposite [AG]. Therefore, the uniform motions of the epicyclet on the eccen-
tric, and of the planet on the epicycle, cause the planet to describe not a perfect,
but an almost perfect, circle. Q.E.D.

Now around D as center describe NO as the earth’s annual circle. Draw
IDR, and also PDS parallel to CG. Then IDR will be the straight line of the
planet’s true motion, and GC of its mean and uniform motion. In R the earth
will be at its true greatest distance from the planet, and in S at its mean [great-
est distance]. Therefore, angle RDS or IDP is the difference between these
two, the uniform and apparent motions, that is, between angles ACG and CDI.
But suppose that instead of eccentric AB, we took as its equal a concentric with
D as center. This concentric would serve as deferent for an epicyclet, whose
radius = CD. On this [first epicyclet] there would also be a second epicyclet,
whose diameter = %2 CD.

Let the first epicycle move eastward, and the second in the opposite direction
with equal speed. Finally, on the second epicycle let the planet travel at twice
this speed. The same results will follow as those described above, and they will
not differ much from the lunar phenomena, or even [from those obtained] by
any of the aforementioned arrangements.

But here I have chosen an eccentrepicycle. For though [the distance] be-
tween the sun and C always remains the same, D is meanwhile found to have
shifted, as was shown in the solar phenomena [III, 20]. This shift is not accom-
panied equally by the others. Hence these must undergo an irregularity which,
although slight, is nevertheless perceptible in Mars and Venus, as will be seen
in the proper places [V, 16, 22].

Therefore, these hypotheses suffice for the phenomena, as I shall presently
prove from observations. I shall do so first for Saturn, Jupiter, and Mars, for

which the principal and hardest task is to find the place of the apogee and the
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distance CD, since from these data the rest is easily demonstrated. For these
[three planets] I shall use practically the same procedure as I employed for the
moon [IV, 5], namely, a comparison of three ancient oppositions to the sun
with the same number of modern oppositions. These are called “acronycal ris-
ings” by the Greeks, and by us [risings and settings] “at the ends of the night.”
At those times the planet is in opposition to the sun and meets the straight line
of the sun’s mean motion, where it sloughs off the entire inequality imposed on
it by the earth’s motion. These positions are obtained instrumentally by observ-
ing with the astrolabe, as was explained above [II, 14], and also by applying the

computations for the sun, until the planet has clearly arrived opposite it.

Derivations of Saturn’s motion. Chapter .

Let us begin with Saturn by taking three oppositions observed long ago by
Ptolemy [ Syntaxis, X1, 5]. The first of these occurred at the 1st hour of night on
the 7th day of the month Pachon in Hadrian’s 11th year. This was 26 March 127
A.D., 17 uniform hours after midnight, when the computation is reduced to the
meridian of Cracow, which we have found to be 1 hour away from Alexandria.
In the sphere of the fixed stars, to which we refer all these data for the origin of

uniform motion, the planet’s place was located at about 174° 40°.

For at that time the sun in its simple motion was opposite [Saturn] at 354° 40,
the horn of the Ram being taken as the zero point.

The second opposition happened on the 18th day of the Egyptian month
Epiphi in Hadrian’s 17th year. This was 15 uniform hours after midnight on the
3rd day before the Nones of June in the Roman calendar 133 A.D. Ptolemy finds
the planet at 243° 3, while the sun in its mean motion was at 63°3" at 15 hours
after midnight.

Then he reported the third opposition as taking place on the 24th day of
the Egyptian month Mesori in Hadrian’s 20th year. This was 8 July 136 A.D., 11
hours after midnight, similarly reduced to the Cracow meridian. [The planet
was] at 277° 37°, while the sun in its mean motion was at 97°37".

In the first interval, therefore, there are 6 years, 7o days, 55 day-minutes,
during which the planet apparently moved 68° 23°, while the earth’s mean mo-
tion away from the planet—this is the motion in parallax—was 352° 44". Hence
the 7° 16" missing from the circle are added to make the planet’s mean motion
75°39". In the second interval there are 3 Egyptian years, 35 days, 50 day-min-

utes; the planet’s apparent motion is 34° 34’, and the motion in parallax is 356°

281 Nicolaus Copernicus. De Revolutionibus Orbium Ceelestium, Libri VI. Nuremberg, 1543. THE WARNOCK LIBRARY

page 143v




43’. The remaining 3°17° of a circle are added to the planet’s apparent motion,
so that there are 37° 51" in its mean motion.

Having reviewed these data, draw the planet’s eccentric circle ABC, with
center D, and diameter FDG, on which E is the center of the earth’s grand
circle. Let A be the epicyclet’s center at the first opposition, B at the second,
and C at the third. Around these [points as centers], describe this epicyclet,
with radius = % DE. Join centers A, B, and C with D and E by straight lines
intersecting the epicyclet’s circumference in points K, L, and M. Take arc KN
similar to AF, LO to BE, and MP to FBC. Join EN, EO, and EP. Then by [the
preceding] computation arc AB = 75° 39", BC = 37° 51, NEO = the angle of
apparent motion = 68°23’, and angle OEP = 34°34".

The first task is to investigate the places of the higher and lower apsides,
that is, of F and G, as well as DE, the distance between the centers [of the
planet’s eccentric and the earth’s grand circle]. Without this information there

is no way of distinguishing between the uniform and apparent motions.

But here too we encounter a difficulty no less than Ptolemy’s in this discussion.
For if the given angle NEO enclosed the given arc AB, and OEP included BC,
the path would now be open to derive what we are seeking. However, the known

arc AB subtends the unknown angle AEB, and similarly angle BEC lies un-
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known beneath the known arc BC. Yet both must be known. But angles AEN,
BEO, and CEP, which indicate the differences [between the apparent and mean
motions], cannot be ascertained before the determination of arcs AF, FB, and
FBC, which are similar to the arcs of the epicyclet. These values are so inter-
connected that they are unknown or known at the same time. Hence, lacking
the means of deriving them, astronomers relied on @ posteriori arguments and
detours to what could not be reached directly and @ priorz, as happens in the
squaring of the circle and many other problems. Thus in this investigation
Ptolemy elaborated a verbose treatment and an enormous mass of calculations.
To review these words and numbers is, in my judgment, burdensome and un-
necessary, since in my discussion, which follows, I shall adopt practically the
same procedure.

Reviewing his calculations, in the end [Synzaxis, X1, 5] he found arc AF =
57°1, FB =18°37, FBC = 56%° and DE = the distance between the centers = 6P
50°, whereof DF = 60P. But with DF = 10,000 on our numerical scale, DE =
1,139. Of this total, I have accepted % for DE = 854, and I have assigned the
remaining ¥ = 285 to the epicyclet. Assuming these values and borrowing them

tor my hypothesis,

I shall show that they agree with the observed phenomena.

In the first opposition there are given in triangle ADE side AD = 10,000?, DE
= 8547, and angle ADE as the supplement of ADF. From these values, in accord-
ance with the theorems on Plane Triangles, AE = 10,489 of the same units, while
the remaining angles DEA = 53°6', and DAE = 3° 55, when 4 right angles = 360°.
But angle KAN = ADF = 57°1". Therefore the whole angle NAE = 60°56". Conse-
quently in triangle NAE two sides are given: AE = 10,489, and NA = 285°, whereof
AD =10,000P, as well as angle NAE. Angle AEN will also be given = 1°22, and the
remaining angle NED = 51° 44', whereof 4 right angles = 360°.

The situation is similar in the second opposition. For in triangle BDE, side
DE is given = 854?, whereof BD = 10,000"; and angle BDE = supplement of
BDF =161°22". The angles and sides of this triangle too will be given: side BE
10,812P, whereof BD = 10,000P; angle DBE 1°27'; and the remaining angle BED
= 17°11". But angle OBL = BDF =18°38". Therefore the whole angle EBO = 20°
5". In triangle EBO, accordingly, besides angle EBO two sides are given: BE =
10,812P and BO = 285P. In accordance with the theorems on Plane Triangles, the
remaining angle BEO is given = 32". Hence OED = the remainder = 16° 39".

Likewise in the third opposition, in triangle CDE, as before, two sides, CD
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and DE, are given, as well as angle CDE [the supplement of] 56° 29". In ac-
cordance with Theorem IV on Plane Triangles, base CE is given = 10,5127,
whereof CE = 10,000P; angle DCE = 3°53"; and the remaining angle CED = 52°
36". Therefore the whole angle ECP = 60° 22", with 4 right angles = 360°. Then
also in triangle ECP two sides are given, besides angle ECP. Angle CEP is also
given = 1°22". Hence the remaining angle PED = 51°14’". Accordingly the whole
angle OEN of the apparent motion amounts to 68° 23, and OEP to 34°35’, in
agreement with the observations. F, the place of the eccentric’s higher apse, is
226° 20’ from the head of the Ram. To this figure add 6° 40" for the precession

of the vernal equinox

as it was then, and the apse reaches 23° within the Scorpion, in conformity with
Ptolemy’s conclusion [Synzaxis, X1, 5]. For the planet’s apparent place in this
third opposition (as was mentioned) = 277°37". From this figure subtract 51° 14’
= PEF, the angle of the apparent motion, as has been shown, and the remainder

is the place of the eccentric’s higher apse in 226° 23"

LR T K -

Now also describe the earth’s annual circle RST, which will intersect line
PE in point R. Draw diameter SET parallel to CD, the line of the planet’s
mean motion. Therefore angle SED = CDF. Hence angle SER, the difference
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and prosthaphaeresis between the apparent and mean motions, that is, between
angles CDF and PED, = 5°16". Between the mean and true motions in parallax
the difference is the same. When this is subtracted from a semicircle, it leaves
arc RT = 174° 44" as the uniform motion in parallax from point T, the assumed
origin, that is, from the mean conjunction of the sun and planet until this third
“end of the night” or true opposition of the earth and planet.

Therefore we now have at the hour of this [third] observation, namely, in
Hadrian’s regnal year 20 = 136 A.D., 8 July, 11 hours after midnight, Saturn’s
anomalous motion from its eccentric’s higher apse = 56%2° and the mean mo-
tion in parallax = 174° 44". The establishment of these values will be useful for

what follows.

Three other more recently observed oppositions of Saturn. Chapter 6.

The computation of Saturn’s motion as reported by Ptolemy differs, however, not
a little from our times, nor could it be understood at once where the error lay
hidden. Hence I was compelled to perform new observations, from which once
more I took three oppositions of Saturn. The first occurred rodhours before mid-
night on 5§ May 1514 A.D., when Saturn was found at 205° 24". The second hap-
pened at noon on 13 July 1520 A.D., [with Saturn] at 273° 25". The third took place
at 6%dhours after midnight on 10 October 1527 A.D., when Saturn appeared at 7’
east of the Ram’s horn. Then between the first and second oppositions there are
6 Egyptian years, 7o days, 33 day-minutes, during which Saturn’s apparent mo-
tion 1s 68°1". From the second opposition to the third there are 7 Egyptian years,
89 days, 46 day-minutes, and the planet’s apparent motion is 86° 42°. In the first
interval its mean motion is 75°39"; and in the second interval, 88° 29". Therefore,
in seeking the higher apse and eccentricity we must operate at first according to
Ptolemy’s procedure [ Syntaxis, X, 7], as if the planet moved on a simple eccentric.
Although this arrangement is not adequate, nevertheless by conforming to it we
shall more easily reach the truth.

Hence take ABC as if it were the circle on which the planet moves uni-
formly. Let the first opposition be at point A, the second at B, and the third at
C. Within ABC let the center of the earth’s circle be D. Joining AD, BD, and
CD, extend any one of them in a straight line to the opposite side of the cir-
cumference, for instance, CDE. Join AE and BE. Then angle BDC is given =
86° 42". Hence with 2 central right angles = 180°, supplementary angle BDE =
93°18’, but 186° 36 with 2 right angles = 360°. Angle BED, intercepting arc BC,
= 88°29". Hence the remaining angle DBE = 84°55".
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Then in triangle BDE, the angles being given, the sides are obtained from the
Table [of the Straight Lines Subtended in a Circle]: BE = 19,953?, and DE =
13,501, whereof the diameter of the circle circumscribing the triangle = 20,000?.

Similarly in triangle ADE, since ADC is given = 154° 43" with 2 right angles =

180°, supplementary angle ADE = 25° 17" But with
2 right angles = 360° ADE = 50°34". In those units
angle AED, intercepting arc ABC, = 164° 8’, and
the remaining angle DAE = 145°18". Therefore the
sides too are known: DE =19,090P, and AE = 8,542?,

whereof the diameter of the circle circumscribed

around triangle ADE = 20,000". But in units

whereof DE was given = 13,501° and BE = 19,9537,
AE will be 6,041". Then in triangle ABE also, these two sides, BE and EA, are

given, as well as angle AEB, intercepting arc AB, = 75°39". Hence, in accordance

with the theorems on Plane Triangles, AB = 15,647°, whereof BE = 19,968P. But as

AB, subtending a given arc, = 12,266° whereof the eccentric’s diameter = 20,000?,

EB = 15,664, and DE = 10,599?. Through chord BE, then, arc BAE is given = 103°

7'. Therefore the whole of EABC = 191°36". CE, the rest of the circle, = 168° 24
hence its chord CDE = 19,898P; and CD, the remainder, = 9,299P.

Now if CDE were the eccentric’s diameter, obviously the places of the higher
and lower apse would lie on it, and the distance between the centers [of the
eccentric and the earth’s grand circle] would be known. But because segment
EABC is larger [than a semicircle], the center [of the eccentric] will fall within
it. Let it be F. Through it and D draw diameter GFDH, and FKL perpendicu-
lar to CDE.

Clearly, rectangle CD x DE = rectangle GD x DH. But rectangle GD x DH
+(FD)? = (2 GDH)? = (FDH)? Therefore (Y2 diameter)® — rectangle GD x DH
or rectangle CD x DE = (FD)% Then FD will be given as a length = 1,200,

whereof radius GF = 10,000". But in units whereof FG = 60?, FD = 7 12/,

slightly different from Ptolemy [ Synzaxis, X1, 6: 67 50°]. But CDK = 9,949 = ¥
of the whole of CDE. CD has been shown = 9,299P. Therefore the remainder
DK = 650?, whereof GF is assumed = 10,000F, and FD = 1,200P. But in units
whereof FD = 10,000P, DK = 5,4117 = half the chord subtending twice the angle
DFK. The angle = 32° 45", with 4 right angles = 360°. As an angle at the center
of the circle, it subtends a similar quantity on arc HL. But the whole of CHL =
Y CLE [084° 13". Therefore CH, the remainder, extending from the third op-

286 Nicolaus Copernicus. De Revolutionibus Orbium Ceelestium, Libri VI. Nuremberg, 1543. THE WARNOCK LIBRARY

page 146r

page 146v




position to the perigee = 51° 28". Subtract this figure from the semicircle, and
the remaining arc CBG = 128° 32/, extending from the higher apse to the third
opposition. Since arc CB = 88° 29, the remainder BG = 40° 3/, extending from
the higher apse to the second opposition. Then the following arc BGA = 75° 39’
turnishes AG, which extends from the first opposition to apogee G, = 35°36".

Now let ABC be a circle, with diameter FDEG, center D, apogee F, peri-
gee G, arc AF = 35° 36", FB = 40° 3/, and FBC = 128° 32". Of the previously
demonstrated distance between the centers [of Saturn’s eccentric and the earth’s
grand circle], take % for DE = gooP. With the remaining % = 300P, whereof
radius FD [of Saturn’s eccentric] = 10,000?, as radius, describe an epicyclet
around A, B, and C as centers. Complete the diagram in accordance with the
assumed conditions.

If we wish to derive Saturn’s observed places from the foregoing arrange-

ments by

the method explained above and soon to be repeated, we shall find some dis-
crepancies. To speak briefly, lest I overburden the reader and appear to have
worked harder in showing bypaths than in indicating the right road forthwith,
the foregoing data must lead through the solution of the triangles to angle
NEO = 67° 35" and the other angle OEM = 87°12". The latter is ¥2° bigger than
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the apparent [angle], and the former is 26" smaller. We find mutual agreement
only by advancing the apogee a little and setting AF = 38°50’, and then arc FB
=36°49; FBC =125°18"; DE, the distance between the centers = 854P; and the
epicyclet’s radius = 285P, whereof FD = 10,000". These figures nearly agree with
Ptolemy, whose values were set forth above [V, s].

The consistency of the above data with the phenomena and the three ob-
served oppositions will become clear. For in the first opposition, in triangle
ADE side DE is given = 854", whereof AD = 10,000". Angle ADE = 141° 10/,
and together with ADF makes 2 right angles at the center. From the foregoing
information the remaining side AE is shown = 10,6797, whereof radius FD =
10,000F. The remaining angles DAE = 2° 52/, and DEA = 35° 58". Similarly in
triangle AEN, since KAN = ADE, the whole of EAN = 41° 42, and side AN =
285?, whereof AE = 10,679P. Angle AEN will be shown = 1°3". But the whole of
DEA consists of 35° 58". Hence DEN, the remainder, will be 34° 55"

Likewise in the second opposition, triangle BED has two sides given (for
DE = 854?, whereof BD = 10,000F) as well as angle BDE. Therefore BE =
10,6977, angle DBE = 2°45’, and the remaining angle BED =34°4". But LBO =
BDF. Therefore the whole of EBO = 39°34” at the center. Its enclosing sides are
given: BO = 2857, and BE =10,697". From this information BEO is shown = 59".
When this value is subtracted from angle BED, the remainder OED = 33°5".
But it has already been shown in the first opposition that angle DEN =34°55".
Therefore the whole angle OEN = 68°. It revealed the distance of the first
opposition from the second, in agreement with the observations.

A similar demonstration will apply to the third opposition. In triangle CDE
angle CDE is given = 54° 42/, as well as sides CD and DE

previously established. From this information the third side as EC is shown =
9,532, and the remaining angles CED =121°5’, and DCE = 4°13". Therefore the
whole of PCE = 129° 31". Furthermore, in triangle EPC two sides, PC and CE,
are given as well as angle PCE. From this information angle PEC is shown = 1°
18". When this figure is subtracted from CED, it will leave as a remainder angle
PED = 119° 47/, the distance from the eccentric’s higher apse to the planet’s
place in the third opposition. It has been shown, however, that in the second
opposition there were 33° 5" [from the eccentric’s higher apse to the planet’s
place]. Therefore, between Saturn’s second and third oppositions there remain
86° 42". This figure too is recognized to be in agreement with the observations.

Saturn’s place, however, was found by observation to be at that time 8" east of
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the Ram’s first star, accepted as the zero
point. The distance from Saturn’s place to
the eccentric’s lower apse has been shown
to be 60°13". Therefore the lower apse was
at about 60%° and the place of the higher
apse diametrically opposite at 240%5°.
Now describe the earth’s grand circle
RST, with center E. Draw its diameter
SET parallel to CD, the line of the [plan-
et’s] mean motion (by making angle FDC
= DES). Then the earth and our place of
observation will be on line PE, say, at point
R. Angle PES or arc RS = the difference
between angle FDC and DEP = the difference between the [planet’s] uniform

and apparent motions, has been shown = 5°31". When this figure is subtracted
from the semicircle, the remainder, arc RT, = 174° 29" = the planet’s distance
from the grand circle’s apogee T = the sun’s mean place. Thus we have the
demonstration that at 6%chours after midnight on 10 October 1527 A.D., Sat-
urn’s motion in anomaly from the eccentric’s higher apse = 125° 18"; the motion
in parallax = 174° 29”; and the place of the higher apse = 240° 21" from the first
star of the Ram in the sphere of the fixed stars.

Analysis of Saturn’s motion. Chapter 7.
At the time of the last of Ptolemy’s three observations, it has been shown [V, 5],
Saturn’s motion in parallax was at 174° 44, and the place of its eccentric’s higher
apse was 226° 23’ from the beginning of the constellation Ram. Therefore, dur-
ing the time intervening between the two observations [Ptolemy’s last and
Copernicus’ last], it is clear, Saturn completed 1,344 revolutions of its uniform
motion in parallax minus ¥4°. From 1 hour before noon on the 24th day of the
Egyptian month Mesori in Hadrian’s year 20, until the later observation at 6
o'clock on 10 October 1527 A.D., there are 1,392 Egyptian years, 75 days, 48 day-
minutes. For this time, furthermore, if we wish to obtain the motion from the
Table [of Saturn’s Parallactic Motion], we shall similarly find § X 60° plus 59°
48" beyond 1,343 revolutions of the parallax. Therefore, what was asserted [in V,
1] about Saturn’s mean motions is correct.

In that [same] interval, moreover, the sun’s simple motion is 82°30". From

o

this figure subtract 359° 45, and for Saturn’s mean motion the remainder is 82

289 Nicolaus Copernicus. De Revolutionibus Orbium Ceelestium, Libri VI. Nuremberg, 1543. THE WARNOCK LIBRARY

page 148r



45'. This value has now accumulated in Saturn’s 47th [sidereal] revolution, in
agreement with the computation. Meanwhile the place of the eccentric’s higher
apse has also advanced 13° 58" in the sphere of the fixed stars. Ptolemy believed
that the apse was fixed in the same way [as the stars], but now it is evident that

the apse moves about 1°in 100 years.

Determining Saturn’s places. Chapter 8.

From the beginning of the Christian era to Ptolemy’s observation at 1 hour
before noon on the 24th day of the month Mesori in Hadrian’s year 20, there
are 135 Egyptian years, 222 days, 27 day-minutes. During that time Saturn’s
motion in parallax is 328° 55". When this figure is subtracted from 174° 44, the

remainder 205° 49

gives the extent of the distance of the sun’s mean place from Saturn’s mean
place, and this is the latter’s motion in parallax at midnight preceding 1 January
[1 A.p.] The motion in 775 Egyptian years, 12%2 days, from the 1st Olympiad to
this place [at the beginning of the Christian era] includes, in addition to com-
plete revolutions, 70° 55". When this figure is subtracted from 205° 49’, the re-
mainder 134° 54" marks the beginning of the Olympiads at noon on the first day
of the month Hecatombaeon. From that place, after 451 years, 247 days, there
are, in addition to complete revolutions, 13°7. When this figure is added to the
previous value, the sum gives 148° 1° for the place of Alexander the Great at
noon on the first day of the Egyptian month Thoth. For Caesar, in 278 years,
118% days, the motion is 247° 20’, making the place 35° 21" at midnight preced-
ing 1 January [45 B.c.]

Saturn’s parallaxes arising from the earth’s annual revolution, and Saturn’s
distance [from the earth]. Chapter 9.

Saturn’s uniform and apparent motions in longitude are set forth in the forego-
ing manner. For, the other phenomena to which it is subject are parallaxes, as I
have called them [V, 1], arising from the earth’s annual orbit. For just as the
earth’s size as compared with its distance from the moon creates parallaxes, so
also the orbit in which it revolves annually has to produce parallaxes in the five
planets. But because of the orbit’s size the planetary parallaxes are far more
conspicuous. These parallaxes cannot be ascertained, however, unless the plan-
et’s altitude is known previously. It is possible, nevertheless, to obtain the alti-

tude from any observation of the parallax.
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I made such an observation of Saturn at 5 uniform hours after midnight on
24 February 1514 A.D. Saturn was seen in a straight line with stars in the Scorpi-
on’s forehead, that is, the second and third [stars in that constellation], which
have the same longitude, 209° in the sphere of the fixed stars. Through them,
accordingly, Saturn’s place was known. From the beginning of the Christian era

until this hour there are 1,514 Egyptian years, 67 days, 13 day-minutes.

Hence the sun’s mean place was computed to be 315° 41°; Saturn’s parallactic
anomaly, 116° 317; and therefore Saturn’s mean place was 199° 10’, and the place
of the eccentric’s higher apse was about 240%5°.

Now, in accordance with the previous model, let ABC be the eccentric,

with its center at D. On its diameter BDC let B be the apogee, C the perigee,

and E the center of the earth’s orbit. Join

AD and AE. With A as center, and radius ¥ r @
=¥ DE, describe the epicyclet. On it let F ' L/

be the planet’s place, making angle DAF = ’/
ADB. Draw HI, as though it were in the / :

same plane as circle ABC, through E, the
center of the earth’s orbit. As the orbit’s
diameter, let HI be parallel to AD, so that
H is understood to be the point on the
earth’s orbit farthest from the planet, and
Iis the nearest point. On the orbit take arc

HL = 116° 31" in agreement with the com-

putation of the parallactic anomaly. Join
FL and EL. Extend FKEM to intersect
both sides of the orbit’s circumference. Angle ADB = 41° 10" = DAF, by hy-
pothesis. Supplementary angle ADE =138°50". DE = 854P, whereof AD =10,000".
These data show that in triangle ADE, the third side AE = 10,667, angle DEA
= 38° 9, and the remaining angle EAD = 3°1". Therefore the whole of EAF =
44°11". Thus again in triangle FAE, side FA is given = 285", whereof AE also is

given. The remaining side FKE will be shown = 10,465, and angle AEF =1°5".
Therefore the entire difference or prosthaphaeresis between the planet’s mean
and true places evidently = 4° 6" = angle DAE + angle AEF. For this reason, had
the earth’s place been K or M, Saturn’s place would have appeared to be 203°16°
from the constellation of the Ram, as though it had been observed from center

E. But with the earth at L, Saturn was seen at 209°. The difference of 5° 44
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is the parallax, indicated by angle KFL. But arc HL in the [earth’s] uniform
motion = 116° 31" [= Saturn’s parallactic anomaly]. From this figure subtract the
prosthaphaeresis HM. The remainder ML = 112° 25’, and LIK, the rest [of the
semicircle] = 67°35". From this information angle KEL is also obtained. There-
fore in triangle FEL, the angles being given, the ratio of the sides is also given,
in units whereof EF = 10,465P. In these units EL = 1,090P, whereof AD or BD =
10,000". But if BD = 60P in accordance with the procedure of the ancients, EL
= 6P 32/, which also differs very slightly from Ptolemy’s conclusion. Therefore
the whole of BDE = 10,854?, and CE = the rest of the diameter = 9,146?. How-
ever, the epicyclet at B always subtracts 285° from the planet’s height, but at C
adds the same quantity, that is, % of its diameter. Therefore Saturn’s greatest
distance from center E = 10,569P, and its least distance [from E] = 9,431°, whereof
BD = 10,000P. According to this ratio, the height of Saturn’s apogee = 9F 42/,
whereof the radius of the earth’s orbit = 1, and the height of Saturn’s perigee =
8F 39". From this information Saturn’s larger parallaxes can be clearly obtained
by the procedure explained in connection with the moon’s small parallaxes [IV,
22, 24]. Saturn’s greatest parallaxes = P 55” with the planet at apogee, and with
the planet at perigee = 6F 39". The difference between these two values = 44/,
which occurs when the lines coming from the planet are tangent to the [earth’s]
orbit. Through this example every individual variation in Saturn’s motion is
found. I shall set these variations forth hereafter at the same time for these five

planets jointly [V, 33].

Expositions of Jupiter’s motion. Chapter 10.
Having finished Saturn, I shall use the same procedure and order also for ex-
pounding Jupiter’s motion. First, I shall repeat three places reported and analyzed
by Ptolemy [ Syntaxis, X1, 1]. I shall so reconstitute them by means of the previ-
ously exhibited transformation of the circles that they are the same as, or not
much different from, his places.

The first of his oppositions occurred 1 hour before the midnight following
the 1st day of the Egyptian month Epiphi in Hadrian’s year 17

at 23° 11" within the Scorpion, according to Ptolemy, but at 226° 33" after the
precession of the equinoxes is subtracted. He recorded the second opposition 2
hours before the midnight following the 13th day of the Egyptian month Phaophi
in Hadrian’s year 21 at 7° 54" within the Fishes; in the sphere of the fixed stars,
however, this was 331° 16". The third opposition happened 5 hours after the
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midnight following the 20th day of the month Athyr in Antoninus [Pius’] st
year at 7° 45" in the sphere of the fixed stars.

Accordingly, from the first opposition to the second there are 3 Egyptian
years 106 days 23 hours, and the planet’s apparent motion = 104° 43". From the
second opposition to the third the interval is 1 year 37 days 7 hours, and the
planet’s apparent motion = 36°29". In the first period of time the mean motion
= 99°55; and in the second, 33° 26’. Ptolemy found the eccentric’s arc from the
higher apse to the first opposition = 77°15’; the following arc, from the second
opposition to the lower apse = 2° 50’ and from there to the third opposition =
30°36’; the entire eccentricity = 5%2°, whereof the radius = 60P; but if the radius
= 10,000%, the eccentricity = 9r7°. All these values agreed almost exactly with
the observations.

Now let ABC be a circle, whose arc AB from the first opposition to the
second contains the aforementioned 99° 55", and BC = 33°26". Through center D
draw diameter FDG so that, starting from the higher apse F, FA = 77°15", FAB =
177° 10°, and GC = 30° 36". Take E as the center of the earth’s circle, and let
distance DE = 687° = % of [Ptolemy’s eccentricity =] gr7”. With ¥4 = 229P [as
radius], describe an epicyclet around points A, B, and C. Join AD, BD, CD, AE,
BE, and CE. In the epicyclets join AK, BL, and CM, so that angles DAK, DBL,
DCM = ADF, FDB, FDC. Lastly, join K, L, and M by straight lines to E also.

In triangle ADE, angle ADE is given = 102° 45" because ADF is given [as
its supplement = 77°15']; side DE = 687?, whereof AD = 10,000P; the third side
AE will be shown = 10,174F; angle EAD = 3°48’; the remaining angle DEA = 73°
27'; and the whole of EAK = 81°3".

Therefore in triangle AEK likewise, two sides are given: EA = 10,1747, whereof
AK =229, and since angle EAK is also given, angle AEK will be known =1°17".
Accordingly, the remaining angle KED = 72°10".

A similar demonstration will be made in triangle BED. For, sides BD and
DE still remain equal to the previous [corresponding members], but angle BDE
is given = 2°50". Therefore base BE will emerge = 9,314” whereof DB = 10,000,
and angle DBE = 12". Thus again in triangle ELB two sides are given and the
whole angle EBL = 177°22". Angle LEB will also be given = 4. When the sum
of 16" is subtracted from angle FDB, the remainder 176° 54" = angle FEL. From
it subtract KED =72°10’, and the remainder = 104° 44" = KEL, in almost exact
agreement with the angle of the apparent motion between the first and second

of the observed terminal points.
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In like manner at the third position, in triangle CDE two sides, CD and
DE, are given as well as angle CDE = 30° 36". Base EC will be shown in the
same way = 9,410P, and angle DCE = 2°8". Hence the whole of ECM = 147° 44’
in triangle ECM. Thereby angle CEM is shown = 39". Exterior angle DXE =
interior angle ECX + opposite interior angle CEX = 2° 47" = FDC - DEM.
Hence GEM = 180° — DEM = 33°23". The whole angle LEM,

intervening between the second opposition and the third = 36° 29, likewise in page 151r
agreement with the observations. But this third opposition, 33° 23" east of the
lower apse (as was demonstrated), was found at 7° 45" Hence the place of the
higher apse is shown by the remainder of the semicircle to be 154° 22" in the

sphere of the fixed stars.

Now around E describe the earth’s annual orbit
RST, with diameter SET parallel to line DC. Angle
GDC was shown = 30° 36" = GES. Angle DXE =
RES = arc RS = 2° 47" = the planet’s distance from
the orbit’s mean perigee. Thereby the whole of TSR

= [the planet’s distance] from the orbit’s higher apse

emerges = 182° 47'.
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Thus it is confirmed that at this hour of Jupiter’s third opposition, reported
at 5 hours after the midnight following the 20th day of the Egyptian month
Athyr in Antoninus [Pius’] year 1, the planet Jupiter in its anomaly of parallax
was at 182° 477 its uniform place in longitude = 4° 58’ and the place of the
eccentric’s higher apse = 154° 22". All these results are in absolutely complete

agreement also with my hypothesis of a moving earth and uniform motion.

Three other more recently observed oppositions of Jupiter. Chapter 1.

To the three positions of the planet Jupiter as reported long ago and analyzed
in the foregoing manner, I shall append three others, which I too observed with
the greatest care in oppositions of Jupiter. The first occurred 11 hours after the
midnight preceding 30 April 1520 A.D., at 200° 28" in the sphere of the fixed
stars. The second happened 3 hours after midnight on 28 November 1526 A.D.,

at 48°34". The third took place 19 hours after midnight on 1 February 1529 A.D.,
at113° 44",

From the first opposition to the second, there are 6 years 212 days 40 day-
minutes, during which Jupiter’s motion appeared to be 208° 6". From the sec-
ond opposition to the third, there are 2 Egyptian years 66 days 39 day-minutes,
and the planet's apparent motion = 65°10". In the first period of time, however,
the uniform motion = 199° 40’, and in the second period, 66° 10"

To illustrate this situation, describe an eccentric circle ABC, on which the
planet is regarded as moving simply and uniformly. Designate the three observed

places as A, B, and C in the order of the letters so that arc AB = 199° 40", BC = 66°

10/, and therefore AC = the rest of the circle = 94° _

10". Also take D as the center of the earth’s annual 1 _(L_ =

orbit. To D join AD, BD, and CD. Prolong any one =

of these, say DB, in a straight line BDE to both

sides of the circle. Join AC, AE, and CE. K
Angle BDC of the apparent motion = 65°10/, \\ /

with 4 right angles at the center = 360° Supple- sl %

mentary angle CDE = 114° 50" in such degrees; but
with 2 right angles (as at the circumference) = 360°, CDE = 229° 40". Angle
CED, intercepting arc BC, = 66°10". Therefore [in triangle CDE] the remain-
ing angle DCE = 64°10". Accordingly, in triangle CDE, the angles being given,
the sides are given: CE = 18,150, and ED = 10,918, whereof the diameter of the

circle circumscribed around the triangle = 20,000°.
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A similar demonstration holds for triangle ADE. Angle ADB is given =
151° 54" = the remainder of the circle, from which is subtracted the given dis-
tance from the first opposition to the second. Therefore, supplementary angle
ADE =28°6" as a central angle, but at the circumference = 56°12". Angle AED,
intercepting arc BCA 160° 20". The remaining [inscribed] angle EAD [in tri-
angle ADR] = 143° 28". From this information, side AE emerges = 9,420", and
ED =18,992°, whereof the diameter of the circle circumscribed around triangle
ADE = 20,000°. But when ED = 10,918, AE = 5,415° in units whereof CE =
18,150 also was known.

Hence we again have in triangle EAC two sides, EA and EC, given as well
as angle AEC, intercepting arc AC = 94°10".

From this information, angle ACE, intercepting arc AE, will be shown = 30°
40". When this figure is added to AC, the sum = 124° 50, subtended by CE =
17,727°, whereof the eccentric’s diameter = 20,000°". In those same units, accord-
ing to the previously established proportion, DE = 10,665°. But the whole arc
BCAE =191°. Consequently EB = the remainder of the circle = 169°, subtended
by the whole of BDE =19,908?, whereof BD, the remainder, = 9,243". Therefore
the larger segment is BCAE, within which will lie the [eccentric] circle’s center.
Let this be F.

Now draw diameter GFDH. Obviously rectangle ED x DB = rectangle GD
x DH, which therefore is also given. But rectangle GD x DH + (FD)? = (FDH)?,
and when rectangle GD x DH is subtracted from (FDH)? the remainder =
(FD)? Therefore as a length FD is given = 1,193* whereof FG = 10,000". But
when FG = 60f, FD = 7# 9". Now bisect BE at K, and draw FKL, which will
therefore be perpendicular to BE. Since BDK =% = 9,9547, and DB = 9,243P, the
remainder DK = 711°. Hence, in [right] triangle DFK, the sides being given, angle
DFK also is given = 36° 35, and arc LH likewise = 36° 35". But the whole of LHB
= 84%°. The remainder BH = 47° 55" = the distance of the place of the second
[opposition] from the perigee. The remainder BCG = the distance from the sec-
ond opposition to the apogee = 132° 5". From BCG subtract BC = 66°10", and the
remainder = 65° 55" [the distance] from the place of the third [opposition] to the
apogee. When this figure is subtracted from 94°10’, the remainder = 28°15" = the
distance from the apogee to the epicycle’s first place.

The foregoing results unquestionably agree only slightly with the phenom-
ena, since the planet does not run along the aforementioned eccentric. Conse-

quently this method of exposition, based on an erroneous foundation, cannot
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produce any sound result. Among the many proofs of its fallibility is the fact
that in Ptolemy it yielded an eccentricity greater than was proper for Saturn,
and for Jupiter smaller, whereas in my case the eccentricity for Jupiter was quite
excessive. Thus it appears obvious that when different arcs of a circle are as-

sumed for a planet,

the desired result does not come out in the same way. A comparison of Jupiter’s
uniform and apparent motion at the three aforementioned terminal points, and
thereafter at all places, would have been impossible had I not accepted the entire
eccentricity declared by Ptolemy = 5P 30" whereof the eccentric’s radius = 60P, but
with the radius = 10,000?, the eccentricity = 9r7* [ V, 10], and put the arc from the
higher apse to the first opposition = 45° 2’ from the lower apse to the second

opposition = 64° 42; and from the third opposition to the higher apse = 49°8".
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Reproduce the previous diagram of an eccentrepicycle, insofar as it fits this
situation. In accordance with my hypothesis, % of the entire distance between
the centers = 687" = DE, while the epicyclet receives the remaining %4 = 229?
whereof FD = 10,000P. Angle ADF = 45°2". Hence, in triangle ADE, two sides,
AD and DE, are given, as well as angle ADE. Thereby the third side AE will
be shown = 10,496" whereof AD = 10,000, and angle DAE = 2° 39". Angle
DAK being assumed = ADF, the whole of EAK = 47° 41". Moreover, in triangle
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AEK two sides, AK and AE, are also given. This makes angle AEK = 57".
When this angle + DAE are subtracted from ADF, the remainder KED = 41°
26’ at the first opposition.

A similar result will be shown in triangle BDE.

"Two sides, BD and DE, are given, and angle BDE = 64° 42". Hence here too the
third side BE will be known = 9,7257 whereof BD = 10,0007, as well as angle
DBE = 3° 40". Consequently, also in triangle BEL two sides, BE and BL, are
given, together with the whole angle EBL = 118°58". BEL will also be given = 1°
10’, and thereby DEL = 110° 28". But KED was previously known = 41° 26".
Therefore the whole of KEL = 151° 54". Then, as the remainder from 4 right
angles = 360°, 208° 6" = the apparent motion between the first and second op-
positions, in agreement with the [revised] observations.

Lastly, at the third place, sides DC and DE of triangle CDE are given in
the same way. Moreover, angle CDE = 130° 52" because FDC is given. The
third side CE will emerge = 10,463F whereof CD = 10,0007, and angle DCE =
2°51". Therefore the whole of ECM = 51° 59". Consequently in triangle CEM
likewise two sides, CM and CE, are given, as well as angle MCE. Angle
MEC will also be known = 1°. MEC + DCE, previously found, = the differ-
ence between FDC and DEM, the angles of the uniform and apparent mo-
tions. Therefore DEM at the third opposition = 45°17". But DEL has already
been shown = 110° 28". Therefore LEM = the difference = 65° 10" = the angle
from the second observed opposition to the third, likewise in agreement with
the observations. But since Jupiter’s third place was seen at 113° 44 in the
sphere of the fixed stars, the place of Jupiter’s higher apse is shown O159°

Now around E describe the earth’s orbit RST,
with diameter RES parallel to DC. Evidently, at
Jupiter’s third opposition, angle FDC = 49°8" = DES,

and R = the apogee of the uniform motion in paral-
lax. But after the earth has traversed a semicircle plus
arc ST, it enters into conjunction with Jupiter in op-

position. Arc ST = 3°51" = angle SET, as was shown

numerically. These figures therefore show that 19

hours after midnight on 1 February 1529 A.D.
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Jupiter’s uniform anomaly in parallax = 183° 517 its true motion = 109° 52; and
the eccentric’s apogee now [J159° from the horn of the constellation Ram. This

is the information we were seeking.

Confirmation of Jupiter’s uniform motion. Chapter 2.

Aswe saw above [V, 10], in the last of the three oppositions observed by Ptolemy
the planet Jupiter in its mean motion was at 4°58’, while the parallactic anomaly
was 182° 47". Hence, in the period intervening between both observations
[Ptolemy’s last and Copernicus’last], Jupiter’s motion in parallax evidently tra-
versed 1° 5" in addition to complete revolutions; and its own motion, about 104°
54 . The time elapsed between 5 hours after the midnight following the 20th
day of the Egyptian month Athyr in Antoninus [Pius’] year 1, and 19 hours
after the midnight preceding 1 February 1529 A.D., amounts to 1,392 Egyptian
years 99 days 37 day-minutes. To this time, according to the computation set
forth above, the corresponding [motion in parallax] similarly = 1° 5" after com-
plete revolutions, in which the earth in its uniform motion overtook Jupiter
1,274 times. Thus the calculation is considered to be certain and confirmed
because it agrees with the results obtained visually. In this time also, the eccen-
tric’s higher and lower apsides clearly shifted eastward 4%°. An average distri-

bution assigns approximately 1° to 300 years.

Determining the places of Jupiter’s motion. Chapter 13.

The last of [Ptolemy’s] three observations occurred at 5 hours after the mid-
night following the 20th day of the month Athyr in Antoninus [Pius’] year 1.
The time reckoned backward from then to the beginning of the Christian era =
136 Egyptian years 314 days 10 day-minutes. In that period the mean motion in
parallax = 84° 31"

When this figure is subtracted from 182° 47 [at Ptolemy’s third observation],
the remainder = 98° 16" for the midnight preceding 1 January at the beginning
of the Christian era. From that time to the 1st Olympiad in 775 Egyptian years
12%2 days, the motion is computed = 70° 58" in addition to complete circles.
When this figure is subtracted from 98°16" [for the Christian era], the remain-
der = 27°18’ for the place of the Olympiads. Thereafter in 451 years 247 days the
motion amounts to 110° 52". When this figure is added to the place of the Ol-
ympiads, the sum = 138° 10" for the place of Alexander at noon on the 1st day of
the Egyptian month Thoth. This method will serve for any other epochs.
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Determining Jupiter’s parallaxes, and its height in relation to the earth’s
orbital revolution. Chapter 14.
For the purpose of determining the other phenomena connected with Jupiter,
namely, its parallax, I very carefully observed its position at 6 hours before noon
on 19 February 1520 A.p. Through the instrument I saw Jupiter 4° 31" west of the
first, brighter star in the forehead of the Scorpion. Since the fixed star’s place =
209° 40, Jupiter’s position obviously = 205° 9" in the sphere of the fixed stars.
From the beginning of the Christian era to the hour of this observation there
are 1,520 uniform years 62 days 15 day-minutes. Thereby the sun’s mean motion
is derived = 309° 16', and the [mean] parallactic anomaly = 111° 15". Hence the
planet Jupiter’s mean place is determined = 198°1". In our time the place of the
eccentric’s higher apse has been found = 159° [V, 11]. Therefore, the anomaly of
Jupiter’s eccentric = 39°1".

To illustrate this situation, describe the eccentric circle ABC, with center
D and diameter ADC. Let the apogee be at A, the perigee at C, and therefore
let E, the center of the earth’s annual orbit, be on DC. Take arc AB =39°1".
With B as center, describe the epicyclet, with [radius] BF = % DE = the dis-
tance [between the centers]. Let angle DBF = ADB.

Draw straight lines BD, BE, and FE.

In triangle BDE two sides are given: DE = 687" whereof BD = 10,000°.
They enclose the given angle BDE = 140° 59". From this information base BE
will therefore be shown = 10,5437, and angle DBE = 2° 21" = ADB - BED.
Consequently the whole of angle EBF = 41° 3

22". Hence in triangle EBF, angle EBF is given,
together with the two sides enclosing it: EB =
10,543° whereof BD = 10,000F, and BF = 229?
=1 (DE = the distance) [between the centers].

From this information the remaining side FE
is deduced = 10,3737, and angle BEF = 50°.
Lines BD and FE intersect each other in point
X. Hence angle DXE at the intersection =
BDA - FED = the mean motion minus the
true. DXE = DBE + BEF = 3°11". When this

figure is subtracted from 39°1’, the remainder

= angle FED = 35° 50" = the angle between the |
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place of the higher apse = 159° [V, 11]. Together they amount to 194° 50". This
was Jupiter’s true place with respect to center E, but the planet was seen at 205°
9" [V, 14, above]. Therefore, the difference = 10° 19" belongs to the parallax.

Now around E as center, describe the earth’s orbit RST, with diameter RET
parallel to BD, so that R is the parallactic apogee. Also take arc RS = 111°15” in
accordance with the determination [at the beginning of V, 14] of the mean
parallactic anomaly. Prolong FEV in a straight line through both sides of the
earth’s orbit. V will be the planet's true apogee. REV = the angular difference
[between the mean and true apogees], = DXE, makes the whole arc VRS = 114°
26’, and FES, the remainder = 65°34".

But EFS was found = 10°19’, and FSE, the remaining angle = 104°7". Therefore
in triangle EFS, the angles being given, the ratio of the sides is given: FE:ES =
9,698:1,791. Then, with FE = 10,3737, ES = 1,916, with BD = 10,000. Ptolemy,
however, found ES = 11 30, with the eccentric’s radius = 60P [Synzaxis, X1, 2].
This is nearly the same ratio as 1,916:10,000. In this respect, therefore, I seem
not to differ from him at all.

Then diameter ADC:diameter RET = 5P 13”1, Similarly, AD:ES or RE =
5P 13" 9":1P. In like manner DE = 21" 29", and BF = 7" 10" Therefore, with the
radius of the earth’s orbit = 17, the whole of ADE — BF = 5P 27" 29", with Jupiter
at apogee; [with the planet] at perigee, the remainder EC + BF = 47 58" 49"; and
with the planet at places between [apogee and perigee], there is a correspond-
ing value. These figures lead to the conclusion that at apogee Jupiter makes its
greatest parallax = 10° 35'; at perigee, 11° 35; and between these the difference =
1°. Accordingly, Jupiter’s uniform motions as well as its apparent motions have

been determined.

The planet Mars. Chapter 15.

Now I must analyze Mars’ revolutions by taking three of its ancient opposi-
tions, with which I shall once again combine the earth’s motion in antiquity. Of
the oppositions reported by Ptolemy [Synzaxis, X, 7], the first occurred 1 uni-
form hour after the midnight following the 26th day of Tybi, the 5th Egyptian
month, in Hadrian’s year 15; according to Ptolemy, the planet was at 21° within

the Twins, but at 74° 20" in relation to the sphere of the fixed stars.

He recorded the second opposition at 3 hours before midnight following the
6th day of Pharmuthi, the 8th Egyptian month, in Hadrian’s year 19, with the
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planet at 28° 50" within the Lion, but at 142° 10" in the sphere of the fixed stars.
The third opposition happened at 2 uniform hours before the midnight follow-
ing the 12th day of Epiphi, the 11ith Egyptian month, in Antoninus [Pius’] year
2, with the planet at 2° 34" within the Archer, but at 235° 54’ in the sphere of the
fixed stars.

Between the first opposition and the second, then, there are 4 Egyptian
years 69 days, plus 20 hours = 50 day-minutes, with the planet’s apparent mo-
tion, after complete revolutions, = 67° 50". From the second opposition to the
third, there are 4 years 96 days 1 hour, with the planet’s apparent motion = 93°
44 . But in the first interval the mean motion = 81° 44" in addition to complete
revolutions; and in the second interval, 95° 28". Then Ptolemy found [ Synzaxis,
X, 7] the entire distance between the centers = 12P whereof the eccentric’s radius
= 60P; but with the radius = 10,0007, the proportionate distance = 2,000". From
the first opposition to the higher apse, the mean motion = 41°33’; then, next in
order, from the higher apse to the second opposition, = 40° 11; and from the
third opposition to the lower apse = 44° 21",

In accordance with my hypothesis of uniform motion, however, the distance
between the centers of the eccentric and of the earth’s orbit = 1,500P = % [of
Ptolemy’s eccentricity = 2,000P], while the remaining % = 500P makes up the
epicyclet’s radius. In this way now describe the eccentric circle ABC, with center
D. Through both apsides draw diameter FDG, on which let E be the center of
the circle of the annual revolution. Let A, B, C in that order be the places of the
observed oppositions, with arcs AF = 41° 33", FB = 40° 11, and CG = 44° 21" At
each of the points, A, B, and C describe the epicyclet, with radius = % of the
distance DE. Join AD, BD, CD, AE, BE, and CE. In the epicyclets draw AL,
BM, and CN so that angles DAL, DBM, and DCN = ADF, BDF, and CDF.

In triangle ADE, angle ADE is given = 138°, because angle FDA is given.
Furthermore, two sides are given: DE = 1,500 whereof AD = 10,000". From
this information it follows that the remaining side AE = 11,172P in the same

units, and angle DAE =5°7".

Hence, the whole of EAL = 46° 40°. So also in triangle EAL, angle EAL is
given as well as two sides: AE = 11,1727, and AL = 500? whereof AD = 10,000°".
Angle AEL will also be given = 1°56". When added to angle DAE, AEL makes
the entire difference between ADF and LED = 7°3’, and DEL = 34%2°.
Similarly, at the second opposition, in triangle BDE angle BDE is given =
139° 49’, and side DE = 1,500? whereof BD = 10,000P. This makes side BE =
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11,188, angle BED = 35°13’, and the remaining angle DBE = 4° 58'. Therefore
the whole of EBM = 45° 9, enclosed by the given sides BE and BM. Hence it
tollows that angle BEM =1°53’, and the remaining angle DEM = 33°20". There-
tore the whole of MEL = 67° 50" = the angle through which the planet was seen
to move from the first opposition to the second, a numerical result in agree-
ment with experience.

Again, at the third opposition, triangle CDE has two sides, CD and DE,
given. They enclose angle CDE = 44° 21". Hence, base CE comes out = 8,988?
whereof CD = 10,000F or DE = 1,500, angle CED =128°57’, and the remaining
angle DCE = 6° 42". Thus once more in triangle CEN, the whole angle ECN =
142° 21, and is enclosed by known sides EC and CN. Hence angle CEN will

also be given = 1°52".

Therefore the remaining angle NED =127°5" at the third opposition. But DEM
has already been shown = 33°20". The remainder MEN = 93° 45" = the angle of
the apparent motion between the second and third oppositions. Here also the
numerical result agrees quite well with the observations. In this last observed
opposition of Mars, the planet was seen at 235° 54, at a distance of 127° 5" from
the eccentric’s apogee, as was shown. Hence, the place of the apogee of Mars’

eccentric was 108° 49" in the sphere of the fixed stars.
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Now around E as center, describe the earth’s
annual orbit RST, with diameter RET parallel to
DC, in order that R may be the parallactic apogee,
and T the perigee. The planet was sighted along EX
at 235° 54" in longitude. Angle DXE has been shown
= 8° 34’ = the difference between the uniform and
apparent motions. Therefore, the mean motion =
244%2°. But angle DXE = central angle SET, which

similarly = 8°34". Hence, if arc ST = 8° 34" is subtracted from a semicircle, we

shall have the planet’s mean motion in parallax = arc RS = 171° 26". Conse-
quently, in addition to other results, I have also shown by means of this hypoth-
esis of the moving earth that at 1o uniform hours after noon on the 12th day of
the Egyptian month Epiphi in Antoninus [Pius’] year 2, the planet Mars’ mean

motion in longitude = 244%2° and its parallactic anomaly = 171° 26".

Three other recently observed oppositions of the planet Mars. Chapter 16.
Once more, with these observations of Mars by Ptolemy, I compared three
others, which I performed not without some care. The first occurred at 1 hour
after midnight on 5 June 1512 A.D., when Mars’ place was found to be 235° 33/,

just as the sun was directly opposite at

55°33" from the first star in the Ram, taken as the beginning of the sphere of the
fixed stars. The second observation happened 8 hours after noon on 12 Decem-
ber 1518 A.D., when the planet appeared at 63° 2". The third observation took
place at 7 hours before noon on 22 February 1523 A.D., with the planet at 133°20".
From the first observation to the second, there are 6 Egyptian years 191 days 45
day-minutes; and from the second observation to the third, 4 years 72 days 23
day-minutes. In the first period of time, the apparent motion = 187° 29, but the
uniform motion = 168°7; and in the second interval, the apparent motion = 70°
18, but the uniform motion = 83°

Now reproduce Mars’ eccentric circle, except that this time AB = 168° 7/,
and BC = 83°. Then by a method like that which I used for Saturn and Jupiter
(to pass silently over the multitude, complexity, and boredom of those compu-
tations), I finally found Mars’ apogee on arc BC. Obviously it could not be on
AB, because [there] the apparent motion exceeded the mean motion, namely,
by 19°22". Nor [could the apogee be] on CA. For even though [there the appar-

ent motion] is smaller [than the mean motion], nevertheless on BC, preceding
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CA, [the mean motion] exceeds the apparent motion by a wider margin than
on CA. But, as was shown above [V, 4], on the eccentric the smaller and dimin-
ished [apparent] motion occurs near the apogee. Therefore, the apogee will
rightly be regarded as located on BC.

Let it be F, and let the circle’s diameter be FDG, on which [E], the center
of the earth’s orbit, is located as well as [D, the center of the eccentric]. I then
found FCA =125°29" and, in order, BF = 66° 25", FC =16°36’, DE = the distance
between the centers = 1,460° whereof the radius = 10,000, and the epicyclet’s
radius = 500P in the same units. These figures show that the apparent is and
uniform motions are mutually consistent and entirely in agreement with the
observations.

Accordingly, complete the diagram, as before. In triangle ADE two sides,
AD and DE, are known, as well as angle ADE, from Mars’ first opposition to
the perigee, = 54° 31". Therefore, angle DAE will be shown to emerge = 7° 24/,
the remaining angle AED = 118° 5, and the third side AE = 9,229". But angle
DAL = FDA by hypothesis. Therefore the whole of EAL = 132° 53". Thus also
in triangle EAL two sides, EA and AL, are given, enclosing the given angle A.

Therefore the remaining angle AEL = 2°12, and the residual angle LED = 115°53".
Similarly, at the second opposition, in triangle BDE two sides, DB and
DE, are given. They enclose angle BDE = 113° 35". Therefore, in accordance

F
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with the theorems on Plane Triangles, angle DBE will be shown = 7° 1r’, the
remaining angle DEB = 59° 14, base BE = 10,668 whereof DB = 10,000" and
BM = 500P, and the whole of EBM =73°36".

Thus, also in triangle EBM, whose given sides enclose the given angle,
angle BEM will be shown = 2°36". DEM, the remainder when BEM is sub-
tracted = 56° 38". Then exterior angle MEG, from the perigee [to the second
opposition], = the supplement = 123°22". But angle LED has already been shown
=115° 53". Its supplement LEG = 64°7". When this is added to GEM, which has
already been found, the sum = 187° 29/, with 4 right angles = 360°. This figure
agrees with the apparent distance from the first opposition to the second.

The third opposition may likewise be analyzed by the same method. For,
angle DCE is shown = 2° 6/, and side EC = 11,407" whereof CD = 10,000".
Therefore the whole of angle ECN = 18° 42". In triangle ECN, sides CE and
CN are already given. Hence,

angle CEN will come out = 50". When this figure is added to DCE, the sum =
2° 56" = the amount by which DEN = the angle of the apparent motion, is
smaller than FDC = the angle of the uniform motion. Therefore DEN is given
= 13° 40". These figures are once more in close agreement with the apparent

motion observed between the second and third oppositions.

On this later occasion, as I said [near the beginning
of V, 16], the planet Mars appeared at 133° 20" from the
head of the constellation Ram. Angle FEN has been
shown [13° 40". Therefore, computed backward, the

place of the eccentric’s apogee in this last observation
obviously = 119° 40" in the sphere of the fixed stars. In
Antoninus [Pius’] time Ptolemy found the apogee at
108° 50" [Syntaxis, X, 7]. It has therefore shifted east-
ward 10° 50" to ours. | have also found the distance be-
tween the centers smaller by 40P whereof the eccentric’s

radius = 10,000". The reason is not that Ptolemy or I

made an error, but that, as is clearly proved, the center
of the earth’s grand circle has approached the center of Mars’ orbit, with the sun
meanwhile remaining stationary. For, these conclusions are mutually consistent
to a high degree, as will become plainer than daylight hereafter [V, 19].

Now around E as center describe the earth’s annual orbit, with its diameter

SER parallel to CD, on account of the equality of their revolutions. Let R = the
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uniform apogee with respect to the planet, and S = the perigee. Put the earth at
T. When ET, along which the planet is sighted, is extended, it will intersect
CD at point X. But in this last position the planet was seen along ETX at 133°
20" of longitude, as was mentioned [near the beginning of V, 16]. Moreover,
angle DXE has been shown = 2° 56". Now DXE is the difference by which
XDF = the angle of the uniform motion, exceeds XED = the angle of the
apparent motion. But SET = alternate interior angle DXE = the parallactic
prosthaphaeresis. When this is subtracted from the semicircle, it leaves as the
remainder 177° 4" = the uniform parallactic anomaly, computed from R = the
apogee of the uniform motion. Consequently we have established here again
that at 7 uniform hours before noon on 22 February 1523 A.D., the planet Mars’
mean motion in longitude = 136°16"; its uniform parallactic anomaly = 177° 4/

and the eccentric’s higher apse = 119° 40". Q.E.D.

Confirmation of Mars’ motion. Chapter 17.

In the last of Ptolemy’s three observations, as was made clear above [V, 15], Mars’
mean motion = 244%° and its parallactic anomaly = 171° 26". Therefore, in the
time intervening [between Ptolemy’s last observation and Copernicus’last obser-
vation] there was an accumulation, in addition to complete revolutions, of 5°38".
From g hours after noon = 3 uniform hours, with respect to the meridian of
Cracow, before the midnight following the 12th day of Epiphi = the 11th Egyp-
tian month in Antoninus [Pius’] year 2, until 7 hours before noon on 22 February
1523 A.D., there are 1,384 Egyptian years 251 days 19 day-minutes. During this
interval, according to the computation set forth above, there is an accumulation
of 5° 38" in the parallactic anomaly after 648 complete revolutions. The antici-
pated uniform motion of the sun = 257%2°. From this figure subtract 5° 38" of the
parallactic motion, and the remainder = 251° 52" = Mars’ mean motion in longi-

tude. All these results agree fairly well with what was just set forth.

Determining Mars’ places. Chapter 18.

From the beginning of the Christian era to 3 hours before midnight on the 12th
day of the Egyptian month Epiphi in Antoninus [Pius’] year 2, there are counted
138 Egyptian years 180 days 52 day-minutes. During that time the parallactic
motion = 293° 4. When this figure is subtracted from the 171° 26" of Ptolemy’s
last observation [V, 15, end], an entire revolution being borrowed, the remain-
der = 238°22" for midnight, 1 January 1 A.p. To this place, from the 1st Olympiad
there are 775 Egyptian years 12% days. During that time the parallactic motion
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= 254° 1. When this figure is similarly subtracted from 238° 22, a revolution

being borrowed, the remainder for the place of the 1st Olympiad = 344° 21".

By similarly separating out the motions for the periods of other eras, we shall

have the place of Alexander’s era = 120°39’, and Caesar’s = 111° 25"

The size of Mars’ orbit in units whereof the earth’s annual orbit is one
unit. Chapter 19.
In addition, I also observed Mars occulting the star called the “southern claw,”
the first bright star in the Claws. I made this observation on 1 January 1512 A.D.
Early in the morning, 6 uniform hours before noon on that day, I saw Mars %4°
away from the fixed star, but in the direction of the sun’s solstitial rising [in the
winter, that is, northeast]. This indicated that Mars was %° east of the star in
longitude, but in latitude %8 to the north. The star’s place being known = 191°
20" from the first star in the Ram, with a northern latitude = 40°, Mars’ place
was clearly = 191° 28, with a northern latitude = 51". At that time the parallactic
anomaly by computation = 98° 28"; the sun’s mean place = 262°% Mars’ mean
place = 163° 32; and the eccentric’s anomaly = 43° 52".

With this information available, describe the eccentric ABC, with center
D, diameter ADC, apogee A, perigee C, and eccentricity DE = 1,460P whereof
AD =10,000P. Arc AB is given = 43°52". With B as center, and radius BF = 500°
whereof AD = 10,000", describe the epicyclet so that angle DBF = ADB. Join
BD, BE, and FE. Furthermore, around E as center, construct the earth’s grand
circle RST. On its diameter RET, parallel to BD, let R = the [uniform] apogee
of the planet’s parallax, and T = the perigee of its uniform motion. Put the
earth at S, with arc RS = the uniform parallactic anomaly, computed = 98° 28"
Extend FE as straight line FEV, intersecting BD at point X, and the convex

circumference of the earth’s orbit at V = the true apogee of the parallax.

In triangle BDE

two sides are given: DE = 1,460° whereof BD = 10,000". They enclose angle
BDE, given = 136° 8’ = the supplement of ADB, given = 43° 52". From this infor-
mation the third side BE will be shown = 11,0977, and angle DBE = 5°13". But
angle DBF = ADB by hypothesis. The whole angle EBF = 49°5’, enclosed by the
given sides EB and BF. We shall therefore have angle BEF = 2° and the remain-
ing side FE = 10,776? whereof DB = 10,000P. Hence DXE = 7°13" = XBE + XEB
= the opposite interior angles. DXE is the subtractive prosthaphaeresis, by which
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angle ADB exceeded XED, and Mars’
mean place exceeded its true place. But
its mean place was computed = 163°32".
Therefore its true place was to the west,
at 156° 19". But to those who were ob-
serving it from a place near S it appeared

at191°28". Therefore its parallax or com-

mutation became 35° 9 eastward.
Clearly, then, angle EFS = 35°9". Since
RT is parallel to BD, angle DXE = REV,
and arc RV likewise = 7° 13". Thus the
whole of VRS = 105° 41" = is the nor-
malized parallactic anomaly. Thus is ob-

tained angle VES, exterior to triangle
FES. Hence, the opposite interior an-
gle FSE is also given = 70°32". All these

angles are given in degrees whereof 180° c

= 2 right angles.

Butin a triangle whose angles are given, the ratio of the sides is given. There-
fore as a length FE = 9,428?, and ES = 5,757°, whereof the diameter of the circle
circumscribed around the triangle = 10,000". Then, with EF = 10,776F, ES [16,580°

whereof BD = 10,000P. This too differs only slightly from what Ptolemy found
[Syntaxis, X, 8], and is almost identical therewith. But in the same units all of
ADE = 11,460, and the remainder EC = 8,540P. At A = the eccentric’s higher
apse, the epicyclet subtracts s00P, and adds the same quantity at the lower apse,
so that at the higher apse 10,960P remain, and at the lower apse 9,040°. There-
tore, with the radius of the earth’s orbit = 17, Mars’ apogee and greatest distance
=17 39  57"; its least distance = 1P 22" 26""; and its mean distance = 1P 31" 11”". Thus
also in the case of Mars the sizes and distances of its motion have been ex-

plained through sound computation by means of the earth’s motion.

The planet Venus. Chapter 2o0.

After the explanation of the motions of the three outer planets, Saturn, Jupiter,
and Mars, which encircle the earth, it is now time to discuss those which are
enclosed by the earth. I shall deal first with Venus, which permits an easier and

clearer demonstration of its motion than the outer planets do, provided that
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the necessary observations of certain places are not lacking. For if its greatest
elongations, morning and evening, to either side of the sun’s mean place are
found equal to each other, then we know for certain that halfway between those
two places of the sun is the higher or lower apse of Venus’ eccentric. These
apsides are distinguished from each other by the fact that when the matched
[greatest] elongations are smaller, they occur around the apogee, with the big-
ger pairs around the opposite apse. In all the other places [between the apsides],
finally, the relative size of the elongations reveals without any uncertainty the
distance of Venus’ globe from the higher or lower apse, and also its eccentricity,
as these topics are treated very perspicuously by Ptolemy [Synzaxis, X, 1-4].
Hence there is no need to repeat these matters one after the other, except inso-
far as they are adapted to my hypothesis of a moving earth from Ptolemy’s
observations.

He took the first of these from the astronomer Theon of Alexandria [Smyrna?].
It was performed at the first hour of the night following the 21st day of the month
Pharmuthi in Hadrian’s year 16, as Ptolemy says [Synzaxis, X, 1] = twilight, 8

March 132 A.D. Venus was seen at its greatest evening elongation = 47%°

from the mean place of the sun, when that mean place of the sun was computed
= 337° 41" in the sphere of the fixed stars. To this observation Ptolemy compared
another, which he says he made at dawn on the 12th day of the month Thoth in
Antoninus [Pius’] year 4 = daybreak, 30 July 140 A.p. Here again he states that
Venus’ greatest morning elongation = 47° 15” = the previous distance from the
sun’s mean place, which was [J119° in the sphere of the fixed stars, and previ-
ously had been = 337° 41". Halfway between these places, clearly, are the apsides
opposite each other at 48%3° and 228%°. To both these figures add 6%5° for the
precession of the equinoxes, and the apsides come out, as Ptolemy says [ Syz-
taxis, X, 1], at 25° within the Bull and Scorpion where Venus’ higher and lower
apsides had to be diametrically opposite each other.

Moreover, for stronger support of this result, he takes another observation
by Theon at dawn on the 20th day of the month Athyr in Hadrian’s year 12 =
the morning of 12 October 127 A.D. At that time Venus was again found at its
greatest elongation = 47° 32" from the sun’s mean place = 191°13". To this obser-
vation Ptolemy adds his own in Hadrian’s year 21 = 136 A.D., on the gth day of
the Egyptian month Mechir = 25 December in the Roman calendar, at the first
hour of the following night, when the evening elongation was again found =

47° 32" from the mean sun = 265°. But in the previous observation by Theon the
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sun’s mean place = 191°13". The midpoints between these places again come out
[148° 20, 228° 20', where the apogee and perigee must lie. As measured from
the equinoxes, these points = 25° within the Bull and Scorpion, which Ptolemy
then distinguished by two other observations, as follows [Synzaxis, X, 2].

One of them was Theon’s on the 3rd day of the month Epiphi in Hadrian’s year
13 = 21 My 129 A.D., at dawn, when he found Venus’ morning greatest elongation =
44° 48, with the sun’s mean motion = 48%°, and Venus appearing at 4°in the sphere

of the fixed stars. Ptolemy himself made the other observation on the 2nd day

of the Egyptian month Tybi in Hadrian’s year 21, which I equate with 18 No-
vember 136 A.D. in the Roman calendar. At the 1st hour of the following night
the sun’s mean motion = 228° 54’, from which Venus’ evening greatest elonga-
tion = 47° 16', with the planet itself appearing at 276%°. By means of these
observations the apsides are distinguished from each other; namely, the higher
apse = 48Y5° where Venus’ [greatest] elongations are narrower, and the lower

apse = 228%3° where they are wider. Q.E.D.
p y

The ratio of earth’s and Venus’ orbital diameters. Chapter 21.

"This information will accordingly also make clear the ratio of the earth’s and Venus’
orbital diameters. Describe the earth’s orbit AB around C as center. Through both
apsides draw diameter ACB, on which take D as the center of Venus’ orbit, eccen-
tric to circle AB. Let A = the place of the apogee. When the earth is in the apogee,
the center of Venus’ orbit is at its greatest distance [from the earth]. AB, the line of

the sun’s mean motion, is at 48%° [at A], with B = Venus’ perigee, at 228%°. Also

draw straight lines AE and BE tangent to Ve-
nus’ orbit at points E and F. Join DE and DF.

DAE, as an angle at the center of a circle,

B

subtends an arc = 44%68 and AED is a right
angle. Therefore, triangle DAE will have its
angles given, and consequently its sides, namely,

DE = half the chord subtending twice DAE =

7,046P whereof AD = 10,000?. In the same way,

in right triangle BDEF, angle DBF is given = 47° y:s
16', and chord DF = 7,346P whereof BD =

10,000". Then, with DF = DE = 7,046, in those units BD = 9,582P. Hence, the
whole of ACB =19,582°; AC = % [ACB] = 9,791°, and CD, the remainder = 209P.
Then, with AC = 1?,
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DE = 43%’, and CD O1%". With AC = 10,000F, DE = DF = 7,193?, and CD [

208P. Q.E.D.

Venus’ twofold motion. Chapter 22.

Nevertheless, there is no simple uniform motion of Venus around D, as is proved
particularly by two of Ptolemy’s observations [Synzaxis, X, 3]. He made one of
them on the 2nd day of the Egyptian month Pharmuthi in Hadrian’s year 18 =
dawn, 18 February 134 A.D. in the Roman calendar. At that time, with the sun’s
mean motion = 318%° Venus, appearing in the morning at 275%° in the ecliptic,
had reached the outermost limit of its elongation = 43° 35". Ptolemy performed
the second observation on the 4th day of the same Egyptian month Pharmuthi
in Antoninus [Pius’] year 3 = twilight, 19 February 140 A.D. in the Roman cal-
endar. At that time too the sun’s mean place = 318%° Venus, at its evening
greatest elongation therefrom = 48%3°, was seen at 7%° in longitude.

With this information available, on the same terrestrial orbit take point G,
where the earth is located, such that AG = the quadrant of a circle, the distance
at which in both observations the sun in its mean motion was seen on the
opposite side [of the circle] west of the apogee of Venus’ eccentric. Join GC,
and construct DK parallel to it. Draw GE and GF tangent to Venus’ orbit. Join
DE, DF, and DG.

In the first observation angle EGC = the morning elongation = 43°35". In the
second observation, CGF = the evening elongation = 48%°. The sum of both =
the whole of EGF = 91'%2°. Therefore DGF = 12 [EGF] = 45° 57%". CGD, the
remainder [J2°23". But DCG is a right angle. Therefore in [right] triangle CGD,
the angles being given, the ratio of the sides is given, and as a length CD = 416?
whereof CG = 10,000P. However, the distance between the centers was shown
above = 208 in the same units [V, 21]. Now it has become just twice as large.

Hence, when CD is bisected at point M, DM will similarly = 208?

= the entire variation of this approach and withdrawal. If this variation is bi-
sected again at N, this will appear to be the midpoint and normalizer of this
motion. Consequently, as in the three outer planets, Venus’ motion too hap-
pens to be compounded out of two uniform motions, whether that occurs
through an eccentrepicycle, as in those cases [V, 4], or in any other of the afore-
mentioned ways.

Nevertheless, this planet differs somewhat from the others in the pattern and

measurement of its motions, as will be demonstrated more easily and more con-
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veniently by an eccentreccentric (in my
opinion). Thus, suppose that around N as

center and with DN as radius, we describe

a circlet on which [the center of | Venus’
circle revolves and shifts in accordance
with the following rule. Whenever the
earth touches diameter ACB, which con-

tains the eccentric’s higher and lower C -

apsides, the center of the planet’s circleis | = /

always at its least distance [from the center | (& ) e
of the earth’s orbit in C ], that is, at point D
f

Y
4

M. But when the earth is at a middle apse
(such as G), the center of the [planet’s]

S

circle reaches point D, with CD the great- .'
) B
est distance [from the center of the earth’s L

orbit in C]. Hence, as may be inferred,
while the earth traverses its own orbit once, the center of the planet’s circle re-
volves twice around center N, and in the same direction as the earth, that is,
eastward. Through this hypothesis for Venus, its uniform and apparent motions
agree with every kind of situation, as will soon be clear. Everything proved thus
far with regard to Venus is found to fit our times too, except that the eccentricity
has decreased by about %. Formerly it was all of 4167 [Ptolemy, Synzaxis, X, 3], but
now it is 350°, as many observations show us.
Analyzing Venus’ motion. Chapter 23.
From these observations I took two places, observed with the greatest accuracy
[Syntaxis, X, 4].

One was the work of Timocharis at dawn on the 18th day of the Egyptian
month Mesori in Ptolemy Philadelphus’ year 13 = year 52 after Alexander’s death.

In this observation Venus was reported as having been seen occulting the
westernmost of the four fixed stars in the Virgin’s left wing. In the description
of this constellation, this is the sixth star, with longitude = 151%°, latitude = 1%°
north, and magnitude = 3. Thus Venus’ place was evident. The sun’s mean place
was computed = 194° 23".

This being the situation, in the illustrative diagram, with point A remain-

ing at 48°20', arc AE = 146°3". BE = the remainder = 33° 57". Furthermore, angle
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CEG = the planet’s distance from the sun’s mean place = 42°53". Line CD = 312P
whereof CE = 10,000". Angle BCE = 33°57". Hence in triangle CDE, the re-
maining angles CED =1°1’, while the third side DE = 9,743°. But angle CDF =
2 X BCE = 67°54". When CDF is subtracted from the semicircle, the remainder
= BDF = 112° 6". BDE, being an angle exterior to triangle CDE, = 34° 58".
Hence, all of EDF = 147° 4". DF is given = 104 whereof DE = 9,7437. Moreover,
in triangle DEF, angle DEF = 20". The whole of CEF = 1° 21, and side EF =
9,8317. But the whole of CEG is already known = 42° 53". Therefore FEG, the
remainder = 41° 32". FG = the radius of [Venus’] orbit = 7,193? whereof EF =
9,831". In triangle EFG, therefore, through the given ratio of the sides and
through angle FEG, the remaining angles are given,

and EFG = 72° 5. When this is added to a semicircle the sum = 252° 5" = arc
KLG, from the higher apse of [ Venus’] orbit. Thus again we have established
that at dawn on the 18th day of the month Mesori in Ptolemy Philadelphus’
year 13, Venus’ parallactic anomaly = 252°5".

I myself observed Venus’ other place at 1 hour after sunset = the start of the
8th hour after noon on 12 March 1529 A.D. I saw Venus beginning to be occulted
by the moon’s dark side midway between both horns. This occultation lasted

until the end of that hour or a little longer, when the planet was observed
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emerging westward on the [moon’s] other side in the middle of the curvature
between the horns. Therefore, at or about the middle of this hour, clearly there
was a central conjunction of the moon and Venus, a spectacle which I wit-
nessed at Frombork. Venus was still increasing its evening elongation, and had
not yet reached the tangent to its orbit. From the beginning of the Christian
era there are 1529 Egyptian years 87 days plus 7% hours by apparent time, but 7
hours 34 minutes by uniform time. The sun’s mean place in its simple motion =
332° 11’; the precession of the equinoxes = 27° 247; the moon’s uniform motion
away from the sun = 33° 57’; its uniform anomaly = 205°1’; and its [motion in]
latitude = 71° 59". From this information the moon’s true place was computed =
10° but with respect to the equinox = 7° 24" within the Bull, with latitude = 1°13’
north. Since 15° within the Balance were rising, the moon’s parallax in longi-
tude = 48’, and in latitude = 32". Hence, its apparent place = 6° 36" within the
Bull. But its longitude in the sphere of the fixed stars = 9° 12’, with north lati-

tude = 41". The same was Venus’ apparent place in the evening when it was 37°

1" away from the sun’s mean place, with the earth’s distance to Venus’ higher
apse = 76° 9’ to the west.

Now reproduce the diagram, following the model of the preceding construc-
tion, except that arc EA or angle ECA =76°9". CDF = 2 x ECA = 152°18". The
eccentricity CD, as it is found nowadays, = 246F, and DF = 104" whereof CE =
10,000°. Therefore, in triangle CDE, we have angle DCE = the remainder

given = 103° 51, and enclosed by given sides. From this information angle CED
will be shown = 1° 15°, the third side DE = 10,056F, and the remaining angle
CDE =74°54". But CDF =2 x ACE =152°18". From CDE, subtract angle CDE,
and the remainder EDF = 77°24". Thus again in triangle DEF, two sides, DF =
104” whereof DE = 10,056P, enclose the given angle EDF. Angle DEF is also
given = 35, as well as the remaining side EF = 10,034". Hence, the whole angle
CEF =1°50". Furthermore, the whole angle CEG = 37°1" = the planet’s appar-
ent distance from the sun’s mean place. When CEF is subtracted from CEG,
the remainder FEG = 35° 11". Accordingly, in triangle EFG also, with angle E
given, two sides are likewise given: EF = 10,034" whereof FG = 7,1937. Hence,
the remaining angles will also be determined: EGF = 53%:° and EFG = 91°19" =
the planet’s distance from its orbit’s true perigee.

But diameter KFL was drawn parallel to CE, so that K = the apogee of [the
planet’s] uniform motion, and L = the perigee. [From EFG = 91°19], subtract
angle EFL = CEF. The remainder = angle LFG = arc LG = 89°29". KG = the
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remainder from the semicircle = 9o° 31" = the planet’s parallactic anomaly as
measured from the uniform higher apse of its orbit. This is what we wanted for
this hour of my observation.

In Timocharis’ observation, however, the corresponding figure = 252° 5. In

the intervening period, then, besides 1,115 complete revolutions, there are 198°26".

From dawn on the 18th day of the month Mesori in Ptolemy Philadelphus’year
13 to 7%2 hours after noon on 12 March 1529 A.D., there are 1,800 Egyptian years
236 days plus about 40 day-minutes. Multiply the motion in 1,115 revolutions
plus 198° 26" by 365 days. Divide the product by 1,800 years 236 days 40 day-
When this figure is distributed over 365 days, the outcome = the daily motion =
36" 59" 28"". This was the basis on which was constructed the Table exhibited
above [after V, 1].

The places of Venus’ anomaly.  Chapter 24.

From the 1st Olympiad to dawn on the 18th day of the month Mesori in Ptolemy
Philadelphus’ year 13 there are 503 Egyptian years 228 days 40 day-minutes,
during which the motion is computed = 290°39’. Subtract this figure from 252°

5" plus 1 revolution, and the remainder = 321° 26" = the place of the 1st Olympiad.
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From this place, the remaining places are obtained by computing the motion
and the time, which has often been mentioned: Alexander’s = 81° 52", Caesar’s =

70°26’, and Christ’s = 126° 45’

Mercury. Chapter 25.
Now that I have shown how Venus is linked with the earth’s motion, and be-
neath what ratio of its circles its uniform motion lies concealed, Mercury re-
mains. It too will doubtless conform to the same basic assumption, even though
it wanders in more convolutions than does Venus or any [other] of the [plan-
ets] discussed above. As is clear from the experience of the ancient observers,
the narrowest of Mercury’s [greatest] elongations from the sun occur in the
sign of the Balance, and wider [greatest] elongations (as is proper) in the oppo-
site sign [the Ram]. Yet its widest [greatest] elongations do not occur in this
place, but in certain others to either side [of the Ram], namely, in the Twins
and Water Bearer, especially in Antoninus [Pius’] time, according to Ptolemy’s
conclusion [Syntaxis, IX, 8]. This displacement occurs in no other planet.
The explanation of this phenomenon was believed by the ancient astrono-

mers

to be the earth’s motionlessness and Mercury’s motion on its large epicycle,
[carried] by an eccentric. They realized that a single, simple eccentric could not
account for these phenomena (even when they permitted the eccentric to move
not around its own center, but around a different center). They were further
obliged to grant that the same eccentric which carried the epicycle moved on
another circlet, such as they accepted in connection with the moon’s eccentric
[IV, 1]. Thus there were three centers: namely, that belonging to the eccentric
which carried the epicycle; secondly, to the circlet; and thirdly, to that circle
which more recent astronomers call the “equant.” Passing over the first two
centers, the ancients allowed the epicycle to move uniformly only around the
equant’s center. This procedure was in gross conflict with the true center [of
the epicycle’s motion], its relative [distances], and the prior centers of both
[other circles]. The ancients were convinced that the phenomena of this planet
could be explained in no other way than that expounded at considerable length
in Ptolemy’s Syntaxis [IX, 6].

However, in order that this last planet too may be rescued from the affronts
and pretenses of its detractors, and that its uniform motion, no less than that of

the other aforementioned planets, may be revealed in relation to the earth’s
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motion, I shall attribute to it too, [as the circle mounted] on its eccentric, an
eccentric instead of the epicycle accepted in antiquity. The pattern, however, is
different from Venus’ [V, 22], and yet on the [outer] eccentric there moves an
epicyclet. The planet is carried not around the epicyclet’s circumference, but up
and down along its diameter. This [motion along a straight line] can be the
result also of uniform circular motions, as was shown above in connection with
the precession of the equinoxes [III, 4]. There is nothing surprising in this,
since Proclus too in his Commentary on Euclid’s E/ements declares that a straight
line can also be produced by multiple motions. Mercury’s appearances will be
demonstrated by all these [devices]. But to make the hypothesis clearer, let the
earth’s grand circle be AB, with its center at C. On diameter ACB, between
points B and C, take D as center and with radius = ¥5 CD describe circlet EF,
so that the greatest distance from C is at F, and at E the least distance. Around
F as center describe HI as Mercury’s [outer eccentric] circle. Then, around its
higher apse I, taken as center, add the epicyclet [KL] traversed by the planet.
Let HI, an eccentreccentric, function as an epicycle on an eccentric.

After the diagram has been drawn in this way, let all these [points] occur in

order on straight line AHCEDFKILB. But meanwhile put the planet at K, that
is, at the least distance = KF from F = the center of the circle carrying the epicyclet.

Make this [K] the beginning of Mercury’s revolutions. Conceive center F per-
forming two revolutions to one of the earth’s and in the same direction, that is,
eastward. The same [speed applies] also to the planet on KL, but up and down
along the diameter with respect to the center of circle HI.

From these arrangements it follows that whenever the earth is in A or B,
the center of Mercury’s circle is at F = its greatest distance from point C. But
when the earth is midway [between A and B] at a quadrant’s distance from
them, [the center of Mercury’s outer eccentric] is at E = its closest [approach to
C]. In accordance with this sequence the pattern is the opposite of Venus’ [V,
22]. Furthermore, as a result of this rule, while Mercury traverses the diameter
of epicyclet KL, it is closest to the center of the circle carrying the epicyclet,
that is, it is at K, when the earth crosses diameter AB. When the earth on
either side is at the places midway [between A and B], the planet arrives at L =
its greatest distance [from the center of the circle carrying the epicyclet]. In
this way, commensurate with the earth’s annual period, two double revolutions
equal to each other occur, that of the center of the circle on the circumference

of the circlet EF, and that of the planet along diameter LK.
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But in the meantime the epicyclet or line FI moves uniformly with its own
motion around circle HI and its center in about 88 days, completing one revo-
lution independently with respect to the sphere of the fixed stars. However, in
what I call the “motion in parallax,” which exceeds the earth’s motion, the

epicyclet overtakes the earth in 116 days, as can be inferred more precisely from

the Table of Mean Motions [after V, 1]. It therefore follows

that in its own motion Mercury does not always describe the same circular
circumference. On the contrary, in proportion to its distance from the center of
its deferent, it traces an exceedingly varying circuit, smallest in point K, great-
estin L, and mean in I. Almost the same variation may be noticed in the lunar
epicyclepicyclet [IV, 3]. But what the moon does along the circumference,
Mercury accomplishes along the diameter in a reciprocating motion. Yet this is
compounded out of uniform motions. How this is done, I explained above in
connection with the precession of the equinoxes [1II, 4]. However, I shall add
some other remarks about this subject later on in connection with the latitudes
[VI, 2]. The foregoing hypothesis suffices for all the observed phenomena of
Mercury, as will become clear from a review of the observations made by Ptolemy

and others.
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The place of Mercury’s higher and lower apsides. Chapter 26.

Ptolemy observed Mercury in Antoninus [Pius’] year 1 on the 20th day of the
month Epiphi after sunset, when the planet was at its greatest evening elonga-
tion from the sun’s mean place [Synzaxis, IX, 7]. This = 138 A.D., 188 days, 42%
day-minutes, Cracow time. According to my computation, therefore, the sun’s
mean place = 63° 50, and the planet [was observed] through the instrument (as
Ptolemy says) at 7° within the Crab. But after the subtraction of the equinoctial
precession, then = 6° 40°, Mercury’s place clearly = 9o°® 20" from the beginning
of the Ram in the sphere of the fixed stars, and its greatest elongation from the
mean sun = 26%°.

Ptolemy made a second observation at dawn on the 19th day of the month
Phamenoth in Antoninus [Pius’] year 4 = 140 years 67 days from the beginning
of the Christian era, plus about 12 day-minutes, with the mean sun at 303°19".
Through the instrument Mercury appeared at 13%° within the Goat, but at
about 276° 49" from the beginning of the Ram among the fixed stars. Therefore,
its greatest morning elongation likewise = 26%2°. The limits of its elongations

from the sun’s mean place being equal on both sides, Mercury’s

apsides must be halfway between both places, that is, between 276° 49" and 9o°

20%;3°34" and, diametrically opposite, 183° 34". These must be the places of both

of Mercury’s apsides, the higher and the lower.
These are distinguished, as in the case of Ve- A
nus [V, 20] by two observations. The first of these
was made [by Ptolemy, Synzaxis, IX, 8] at dawn
on the 15th day of the month Athyr in Hadrian’s
year 19, with the sun’s mean place = 182°38". Mer-
cury’s greatest morning elongation from it = 19°3,
since Mercury’s apparent place = 163°35". In the | /
e

F
: N
\

same year 19 of Hadrian = 135 A.D., on the 19th day (
of the Egyptian month Pachon at twilight Mer- \
cury was found with the aid of the instrument at \ ;
27° 43" in the sphere of the fixed stars, with the sun __,.-'/
in its mean motion = 4° 28". Once more [as in the

case of Venus, V, 20] the planet’s greatest evening

elongation = 23° 15" was larger than the previous \ B

[morning elongation]. Hence Mercury’s apogee

quite clearly was nowhere else but at about 183%° at that time. Q.E.D.
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The size of Mercury’s eccentricity, and the ratio of its circles. Chapter 27.
By means of these observations the distance between the centers and the sizes
of the circles are likewise demonstrated at the same time. For let straight line
AB pass through Mercury’s apsides, A the higher, and B the lower, and let AB
also be the diameter of the [earth’s] grand circle with center C. With center D,
describe the planet’s orbit. Then draw lines AE and BF tangent to the orbit.
Join DE and DF.

In the former of the two observations above, the greatest morning elonga-
tion was seen = 19° 3; therefore, angle CAE = 19°3". But in the other observa-
tion the greatest evening elongation was seen = 23%°. Consequently, in both

right triangles AED and BFD, the angles being given,

the ratios of the sides will also be given. Thus, with AD = 100,000?, ED = the
radius of the orbit = 32,639?. However, with BD = 100,000?, in those units FD
= 39,474". Yet FD (being a radius of the orbit) = ED = 32,639 whereof AD =
100,000P. In those units DB, the remainder = 82,685?. Hence AC =% [AD +
DB] = 91,342, and CD = the remainder = 8,658 = the distance between the
centers [of the earth’s orbit and Mercury’s orbit]. With AC = 1? or 60, however,
the radius of Mercury’s orbit = 21" 26", and CD = 5" 41”. With AC = 100,000,
DF = 35,7337, and CD = 9,479P. Q.E.D.

But these sizes too do
not remain everywhere the A
same, and they are quite dif-
ferent from those occurring
near the mean apsides, as is

shown by the apparent

_H
morning and evening »
elongations observed in c‘. }\\ hx_‘-_—?-__ oy
those positions, as reported Tlf N o e = =
by Theon and Ptolemy [ Syn- : I“Q ,f f,f"" %
taxis, IX, 9]. Theon observed fi; ,.f'l g =
Mercury’s greatest evening \ tfff:’

elongation after sunset on
the 18th day of the month
Mesori in Hadrian’s year 14

= 129 years 216 days 45 day-

b—

minutes after the birth of
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Christ, with the sun’s mean place = 93%°, that is, near Mercury’s mean apse. Through
the instrument the planet was seen at 3%° east of the Little King in the Lion.
Therefore its place = 119%°, and its greatest evening elongation = 26%°. The other
greatest elongation was reported by Ptolemy as observed by himself at dawn on the
21st day of the month Mesori in Antoninus [Pius’] year 2 = 138 years 219 days 12 day-

minutes in the Christian calendar. In like manner the sun’s mean place = 93°39’,
p 93 39

from which he found Mercury’s greatest morning elongation = 20%4°, since it
was seen at 73%08 in the sphere of the fixed stars.

Now reproduce ACDB as the diameter of the [earth’s] grand circle. As
before, let it pass through Mercury’s apsides. At point C erect the perpendicu-
lar CE as the line of the sun’s mean motion. Between C and D take point F.
Around it describe Mercury’s orbit, to which straight lines EH and EG are
tangent. Join FG, FH, and EF.

It is proposed once more to find point F, and the ratio of radius FG to AC.
Angle CEG is given = 26%4° and CEH = 20%°. Therefore, the whole of HEG
= 46" ¥2°. HEF = Y5 = 23%°. CEF = the remainder = 3°. Therefore, in right
triangle CEF, side CF is given = 524, and hypotenuse FE = 10,014” whereof
CE = AC =10,000?. The whole of CD has been shown above [earlier in V, 27]
= 948” when the earth is in the planet’s higher or lower apse. DF = the diameter
of the circlet traversed by the center of Mercury’s orbit = the excess = 424, and
radius IF = 212P. Hence, the whole of CFI [1736%P.

Similarly, in triangle HEF (in which H is a right angle) HEF is also given
= 23%°. Hence, FH clearly = 3,947° whereof EF = 10,000°. But with EF = 10,014P
whereof CE = 10,000, FH = 3,953?. However, FH was shown above [at the
beginning of V, 27, where it was lettered DF] = 3,5737. Let FK = 3,5737. Then
HK = the remainder = 380P = the greatest variation in the planet’s distance from
F = the center of its orbit, which occurs [as the planet moves] from the higher
and lower apsides to the mean apsides. On account of this distance and its
variation, the planet describes around F, the center of its orbit, unequal circles
depending on the various distances, the smallest = 3,573, and the greatest =

3,953". The mean between them must be = 3,763". Q.E.D.

Why Mercury’s elongations at about the side of a hexagon look bigger than
the elongations occurring at perigee. Chapter 28.
Furthermore, it will therefore not seem surprising that at about [the points

where] the sides of a hexagon [touch a circumscribed] circle, Mercury’s
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elongations are greater than at perigee. [ These elongations at 60° from perigee]

exceed even those which I have already demonstrated [at the end of V, 27].

Consequently, the ancients believed that Mercury’s orbit comes closest to the
earth twice in one revolution of the earth.
Construct angle BCE = 60°. Hence angle BIF = 120° since F is assumed to

make two revolutions for one of E = the earth. Join EF and EI. [In V, 27] CI

was shown = 736%F whereof EC
=10,000P, and angle ECI is given
= 60°. Therefore in triangle ECI,
the remaining side EI = 9,655,
and angle CEI 03° 47". CEI =
ACE - CIE. But ACE is given
= 120° Therefore CIE = 116°13".
But angle FIB likewise = 120° =
2 X ECI by construction. CIF,

which completes the semicircle, A2
= 60°. EIF = the remainder = 56° =
13". But IF was shown [in V] 27] *
= 212 p whereof EI = 9,655 [V, o

28, above]. These sides enclose

angle EIF given. This information yields angle FEI = 1° 4.
CEF = the remainder = 2° 43" = the difference between the

center of the planet’s orbit and the sun’s mean place. The

remaining side EF = 9,540°.

Now describe Mercury’s orbit GH around center F. From E draw EG and
EH tangent to the orbit. Join FG and FH. We must first ascertain the size of
radius FG or FH in this situation. We shall do so in the following way. Take a
circlet whose diameter KL = 380F [V, 27] whereof AC = 10,000P. Along this
diameter, or its equivalent, conceive the planet approaching toward, or reced-
ing from, center F on straight line FG or FH in the manner explained above in
connection with the precession of the equinoxes [II1, 4]. According to the hy-
pothesis that BCE intercepts an arc = 60°, take KM = 120°in the same degrees.
Draw MN perpendicular to KL.. MN = half the chord subtending 2 X KM or 2
x ML, will intercept LN = ¥4 of the diameter = 9P,

323 Nicolaus Copernicus. De Revolutionibus Orbium Ceelestium, Libri VI. Nuremberg, 1543. THE WARNOCK LIBRARY

page 167v




as is proved in Euclid’s Elements, X111, 12, combined with V, 15. Then KN = the
remaining ¥% of the diameter = 285P. This, added to the planet’s least distance =
the desired line FG or FH in this instance = 3,858, with AC similarly = 10,000?
and EF also shown = g9,540F [V, 28 above]. Therefore, in right triangle FEG or
FEH, two sides are given. Hence angle FEG or FEH will also be given. With
EF = 10,000?, FG or FH = 4,044F, subtending an angle = 23° 52%2". Thus, the
whole of GEH = 47° 45". But at the lower apse only 46%2° were seen; and at the
mean apse, similarly 46%° [V, 27]. Consequently, here the angle has become
greater than in both those situations by 1°14". The reason is not that the planet’s
orbit is nearer to the earth than it is at perigee, but that here the planet de-
scribes a larger circle than it does there. All these results are in agreement with

both past and present observations, and are produced by uniform motions.

Analysis of Mercury’s mean motion. Chapter 29.

Among the more ancient observations [ Synzaxis, IX, 10] there is found an ap-
pearance of Mercury, at dawn on the 19th day of the Egyptian month Thoth in
Ptolemy Philadelphus’ year 21, 2 lunar diameters east of the straight line pass-
ing through the first and second of the stars in the Scorpion’s forehead, and 1
lunar diameter north of the first star. The place of the first star is known = 209°
40" longitude, 1¥5° north latitude; of the second star = 209°longitude, 1° %° ¥5° =
1%° south latitude. From this information Mercury’s place was inferred = 210°
40" longitude, O1%° north latitude. From Alexander’s death there were 59 years
17 days 45 day-minutes; the sun’s mean place = 228°8’, according to my compu-
tation; and the planet’s morning elongation = 17° 28". This was still increasing,
as was noticed during the next 4 days. Hence the planet had certainly not yet
reached its greatest morning elongation nor the point of tangency on its orbit,
but was still traveling in the lower arc, closer to the earth. Since the higher apse
=183° 20" [V, 26], its distance from the sun’s mean place = 44° 48".

Then once more let

ACB = the grand circle’s diameter, as above [V, 27]. From C = the [grand cir-
cle’s] center, draw CE as the line of the sun’s mean motion so that angle ACE
= 44° 48'. With I as center, describe the circlet which carries the eccentric’s
center = F. Take angle BIF by hypothesis = 2 X ACE =89°36". Join EF and EI.

In triangle ECI two sides are given: CI = 736 [V, 27] whereof CE = 10,000°.
These sides enclose angle ECI given = 135° 12" = supplement of ACE. The re-
maining side EI = 10,534", and angle CEI = 2° 49" = ACE — EIC. Therefore CIE
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is given = 41° 59". But CIF = sup-
plement of BIF = 90°24". Hence,
the whole of EIF = 132° 23"

In triangle EFI, EIF is like-

wise enclosed by given sides,

namely, EI = 10,534%, and IF =
211%P, whereof AC is assumed =
10,000P. This information so dis-
closes angle FEI = 50°, with the
remaining side EF =10,678". CEF
= the remainder = 1°59".

Now take circlet LM, with
diameter LM = 380P whereof AC
= 10,000P. Let arc LN = 89° 36’

by hypothesis. Draw its chord
LN, and NR perpendicular to

LM. Then (LN)? = LM x LR.
According to this given ratio, LR E

in particular is given as a length
[189” whereof diameter LM = 380P. Along this straight line, or its equivalent,

the planet is known to have diverged from F; the center of its orbit, while line

EC has traversed angle ACE. Hence,

when these units are added to 3,573" = the minimum distance [V, 27], in this
situation the sum = 3,762°.

Therefore, with center F, and radius = 3,762F, describe a circle. Draw EG,
cutting the convex circumference [of Mercury’s orbit] at point G so that angle
CEG = 17° 28’ = the planet’s apparent elongation from the sun’s mean place.
Join FG, and FK parallel to CE. When angle CEF is subtracted from the
whole of CEG, the remainder FEG = 15° 29". Hence, in triangle EFG, two
sides are given: EF = 10,678, and FG = 3,762F, as well as angle FEG = 15° 29".
This information yields angle EFG = 33°46". EFG — (EFK = CEF [its alternate
interior angle]) = KFG = arc KG = 31° 47". This is the planet’s distance from its
orbit’s mean perigee = K. If a semicircle is added to KG, the sum = 211° 47" = the

mean motion in parallactic anomaly in this observation. Q.E.D.
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More recent observations of Mercury’s motions. Chapter 30.

The foregoing method of analyzing this planet’s motion was shown to us by
the ancients. But they were helped by clearer skies where the Nile (it is said)
does not give off such mists as does the Vistula for us. We inhabitants of a more
severe region have been denied that advantage by nature. The less frequent
calmness of our air, in addition to the great obliquity of the sphere, allows us to
see Mercury more rarely, even when it is at its greatest elongation from the sun.
For, Mercury’s rising in the Ram and Fishes is not visible to us nor, on the
other hand, is its setting in the Virgin and Balance. Indeed, in the Crab or
Twins it does not show itself in any position whatsoever when there is only
twilight or dawn, whereas it never appears at night unless the sun has moved
well into the Lion. This planet has accordingly inflicted many perplexities and
labors on us in our investigation of its wanderings.

I have therefore borrowed three positions from those which were carefully
observed at Nuremberg. The first was determined by Bernhard Walther,
Regiomontanus’ pupil, 5 uniform hours after midnight on 9 September = 5 days
before the Ides, 1491 A.D., by means of an armillary astrolabe directed toward

Palilicium [ = Aldebaran]. He saw Mercury at 13%2°

within the Virgin, 1° 50" north latitude. At that time the planet was beginning
to set in the morning, while it had steadily diminished its morning appearances
during the preceding days. From the beginning of the Christian era there were
1,491 Egyptian years 258 days 12% day-minutes. The sun’s mean place in itself =
149° 48, but in relation to the vernal equinox = 26° 47" within the Virgin. Hence
Mercury’s elongation L13%4°.

The second position was observed by Johann Schéner 6% hours after mid-
night on g January 1504 A.D., when 10° within the Scorpion were culminating
over Nuremberg. He saw the planet at 3%53° within the Goat, 0° 45" north lati-
tude. The sun’s mean place in relation to the vernal equinox was computed = 27°
7" within the Goat, with Mercury 23° 47 to the west in the morning.

The third observation was made by the same Johann [Schéner] on 18 March
in the same year 1504. He found Mercury at 26° 55" within the Ram, about 3°
north latitude, when 25° within the Crab were culminating over Nuremberg.
His armillary sphere was directed toward the same star Palilicium [Aldebaran]
at 7% hours after noon, with the sun’s mean place in respect to the vernal equi-
nox = 5° 39" within the Ram, and Mercury’s elongation from the sun in the

evening = 21° 17",
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From the first position to the second, there are 12 Egyptian years 125 days 3
day-minutes 45 day-seconds. During this time the sun’s simple motion = 120°
14’ and Mercury’s anomaly in parallax = 316°1". In the second interval there are
69 days 31 day-minutes 45 day-seconds; the sun’s mean simple motion = 68°32’,
and Mercury’s mean anomaly in parallax = 216°.

I'wish to analyze Mercury’s motion at the present time on the basis of these
three observations. In them, I believe it must be granted, the measurements of
the circles have remained valid from Ptolemy until now, since also in the other
planets the earlier sound writers are not found to have gone astray in this re-
spect. If in addition to these observations we had the place of the eccentric’s
apse, nothing further would be missing in the apparent motion of this planet
too. I have assumed that the place of the higher apse = 211%°, that is, 18%°
within the sign of the Scorpion. For I might not make it smaller without injur-

ing the observers. Thus we shall have the eccentric’s anomaly,

I mean, the distance of the sun’s mean motion from the apogee, at the first

determination, = 298° 15’; at the second, = 58°29"; and at the third, = 127°1".

Now draw the diagram
. . A
according to the preceding
model, except that angle
ACE is taken = 61° 45" = the

distance by which the line

of the mean sun was west of
the apogee in the first ob- | /
servation. Let everything \
which follows therefrom be |
in agreement with the hy-
pothesis. IC is given [V, 29]
= 736%2P whereof AC =

10,000P. In triangle ECI,

o

angle EClI also is given. An-
gle CEI will be given too =

3°35’, and side IE = 10,369"

whereof EC = 10,000P, and
IF = 2r1%? [V, 29].
Then also in triangle EFI, there are two sides having a given ratio. By con-

struction angle BIF = 123%2° = 2 X ACE. CIF = the supplement = 56%2°. There-
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fore the whole of EIF = 114° 40". Therefore IEF = 1°5’, and side EF = 10,371".
Hence angle CEF = 2%5°.

However, in order to determine how much the motion of approach and
withdrawal has increased [the distance of | the circle centered at F from the
apogee, or perigee, describe a circlet quadrisected by diameters LM and NR
at center O. Take angle POL = 2 X ACE = 123%°. From point P drop PS
perpendicular to LM. Then, according to the given ratio, OP (or its equiva-
lent LO):OS =10,000?: 5,519F = 190:105. These numbers, added together, con-
stitute LS = 295P whereof

AC = 10,000%, and the extent to which the planet has become more remote

from center F. When 295P is added to 3,573" = the least distance [V, 27], the sum

= 3,868P = the present value. 2
With this as radius, describe n

A
circle HG around center F. Join Ol . j
EG, and extend EF as straight line \, /
EFH. Angle CEF has been shown A2 \ _ l.-r
= 2%°. GEC was observed = 13'4° A f
= the distance between the planet K*.‘ o /

in the morning and the mean sun L \: : ,.\-— f-f \
[in the observation attributed to \ .,-"{z 30 e

Walther]. Then the whole of FEG \ / '\_ ' \
= 15%° But in triangle EFG, -

EF:FG =10,3717:3,868F, and angle > / '
E is given. This information will é\/J
give us also angle EGF = 49° 8",
Hence the remaining exterior an-

gle = 64° 53". When this quantity

1s subtracted from the whole cir- B

cle, the remainder = 295° 7" = the
true anomaly in parallax. To this, add angle CEF, and the sum = the mean and
uniform [anomaly in parallax] = 297° 37, which we were looking for. To this,
add 316°1’, and for the second observation we shall have the uniform parallactic
anomaly = 253° 38’, which I shall also show to be correct and in agreement with
the observation.

As the measure of the anomaly of the eccentric in the second observation,

let us take angle ACE = 58°29". Then, once more, in triangle CEI two sides are
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given: IC = 736P [previously and hereafter 736%2?] whereof EC = 10,000, and
also angle ECI, the supplement = 121° 31". Therefore, the third side EI = 10,404?
in the same units, and angle CEI = 3° 28". Similarly, in triangle EIF, angle EIF
=118°3’, and side IF = 211%P whereof IE = 10,404P. Therefore, the third side EF
= 10,505" in the same units, and angle IEF = 61". Hence, the remainder FEC =
2° 27" = the eccentric’s prosthaphaeresis. When this quantity is added to the
mean motion in parallax, the sum = the true [motion in parallax] = 256° 5.
Now on the epicyclet [which produces the] approach and withdrawal let

us take

arc LP or angle LOP = 2 x ACE = 116° 58'. Once more, then, in right triangle
OPS, because the ratio of the sides OP:OS is given = 10,000":4,5357, OS = 86P
whereof OP or LO = 190P. As a length the whole of LOS = 276°. When this
quantity is added to the smallest distance = 3,573° [V, 27], the sum = 3,849

With this as radius, around F as center describe circle HG so that the apo-
gee of the parallax is at point H. Let the planet’s distance from point H be arc
HG, extending westward 103° 55°. This is the amount by which an entire revo-
lution differs from the corrected motion in parallax = 256° 5'. Therefore EFG,
the supplement = 76°5". Thus again in triangle EFG two sides are given: FG =
3,849 whereof EF = 10,505°. Hence angle FEG = 21°19". When this quantity is
added to CEF, the whole of CEG = is 23° 46" = the apparent distance between
C = the center of the grand circle, and the planet G. This distance too takes
only a little away from the observed elongation.

This agreement will be further confirmed a third time when we take angle
ACE = 127°1 or its supplement BCE = 52° 59". Again we shall have a triangle
[ECI], two of whose sides are known: CI = 736%2? whereof EC = 10,000". These
sides enclose angle ECI = 52° 59". From this information angle CEI is shown =
3°31, and side IE = 9,5757 whereof EC = 10,000". By construction angle EIF is
given = 49° 28, and also is enclosed by given sides FI = 211%P whereof EI =
9,575°. Hence the remaining side = 9,440F in those units, and angle IEF = 59"
When this quantity is subtracted from the whole of IEC, the remainder = FEC
= 2° 32”. This is the subtractive prosthaphaeresis of the eccentric’s anomaly.
When this quantity is added to the mean parallactic anomaly, which I deter-
mined by adding 216° of the second interval = 109° 38’, the true [parallactic
anomaly] comes out = 112°10".

Now on the epicyclet take angle LOP = 2 x ECI = 105° 58". Here too, on the
basis of the ratio PO:OS, we shall have OS = 52P, so that the whole of LOS =
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242P. When this quantity is added to the smallest distance = 3,5737, we shall
have the corrected [distance] = 3,815P. With this as radius, around F as center
describe a circle in which the parallax’s higher apse = H on EFH, prolonged as
a straight line. As a measure of the true parallactic anomaly,

take arc HG = 112° 10, and join GF. Then the supplementary angle GFE = 67°
50". This is enclosed by the given sides GF = 3,815* whereof EF = 9,440F. From

this information angle FEG
will be determined = 23° 50".
From this quantity subtract
the prosthaphaeresis CEF,
and the remainder CEG = 21°
18" = the apparent distance
between the evening planet
[G] and [C,] the center of the
grand circle. This is practically
the same distance as was
tound by observation.

This agreement of these
three positions with the ob-
servations, therefore, unques-
tionably guarantees that the

eccentric’s higher apse is lo-

cated, as I assumed, at 211%2° £ 5

in the sphere of the fixed stars

in our time, and also that the entailed consequences are

correct; namely, the uniform parallactic anomaly in the
.. . , . 0

first position = 297°37/, in the second = 253°38",and in the | % —

third = 109° 38". These are the results we were seeking.

In that ancient observation at dawn on the 19th day of
Thoth, the 1st Egyptian month, in Ptolemy Philadelphus’ year 21, the place of
the eccentric’s higher apse (in Ptolemy’s opinion) = 182° 20" in the sphere of the
fixed stars, while the mean parallactic anomaly = 211° 47" [V, 29]. The interval
between this most recent and that ancient observation = 1,768 Egyptian years
200 days 33 day-minutes. In that time the eccentric’s higher apse moved 28°10’
in the sphere of the fixed stars, and the parallactic motion, in addition to 5,570

whole revolutions = 257° 51". For in 20 years
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about 63 periods are completed, amounting in 1,760 years to 5,544 periods. In
the remaining 8 years 200 days there are 26 revolutions. Accordingly in 1,768
years 200 days 33 day-minutes there is an excess, after 5,570 revolutions, of 257°
s51’. This is the difference between the observed places in that first ancient ob-
servation and ours. This difference also agrees with the numbers set down in
my Tables [after V, 1]. When we compare to this interval the 28° 10" through
which the eccentric’s apogee moved, its motion will be recognized = 1°in 63

years, provided it was uniform.

Determining Mercury’s places. Chapter 31.

From the beginning of the Christian era to the most recent observation there
are 1,504 Egyptian years 87 days 48 day-minutes. During that time Mercury’s
parallactic motion in anomaly = 63° 14/, disregarding whole revolutions. When
this quantity is subtracted from 109° 38" [the anomaly in the third modern ob-
servation], the remainder = 46° 24" = the place of Mercury’s parallactic anomaly
at the beginning of the Christian era. From that time backward to the begin-
ning of the 1st Olympiad there are 775 Egyptian years 12% days. For this inter-
val the computation is 95° 3" after complete revolutions. When this quantity is
subtracted from the place of Christ (one revolution being borrowed), the re-
mainder = the place of the 1st Olympiad = 311° 21'. Moreover, the computation
being made for the 451 years 247 days from this time to Alexander’s death, his

place comes out = 213°3".

An alternative account of approach and withdrawal. ~Chapter 32.

Before leaving Mercury, I have decided to consider another method, no less
plausible than the foregoing, by which that approach and withdrawal can be
produced and explained. Let circle GHKP be quadrisected at center F. Around
F describe a concentric circlet LM. In addition describe another circle OR,
with center L and radius LFO = FG or FH. Suppose that this whole combina-

tion of circles,

together with their intersections GFR and HFP, moves eastward away from the
apogee of the planet’s eccentric around center F about 2° 7" every day, that is, as
much as the planet’s parallactic motion exceeds the earth’s motion in the ecliptic.
Let the planet meanwhile supply the rest of the parallactic motion, nearly equal
to the earth’s motion, away from point G on its own circle OR. Also assume that

in this same revolution, which is annual, the center of OR, the circle which car-
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ries the planet, moves back and forth, as was
stated above [V, 25], in a motion of libration
along diameter LFM, which is twice as great
as the one posited previously.

Now that these arrangements have been
made, put the earth in its mean motion op-
posite the apogee of the planet’s eccentric. At
that time place the center of the planet-car-

rying circle at L, but the planet itself at point

O. Since it is then at its least distance from F,
as the entire [configuration] moves, the planet will describe the smallest circle,
whose radius is FO. What follows thereafter is that when the earth is near the
middle apse, the planet arrives at point H, corresponding to its greatest dis-
tance from F, and describes the largest arcs, that is, along the circle centered at
F. For then the deferent OR will coincide with the circle GH because their
centers merge in F. As the earth proceeds from this position in the direction of
the perigee [of the planet’s eccentric], and the center of the circle OR [oscil-
lates] to the other limit M, the circle itself rises above GK, and the planet at R
will again attain its least distance from F, and traverse the paths assigned to it at
the start. For here the three equal revolutions coincide, namely, the earth’s re-
turn to the apogee of Mercury’s eccentric, the libration of the center along
diameter LM, and the planet’s circuit from line FG to the same line. The only
deviation from these revolutions is the motion of the intersections G, H, K,
and P away from the eccentric’s apse, as I said [earlier in V, 32].

Thus nature has played a game with this planet and its remarkable variabil-
ity, which has nevertheless been confirmed by its perpetual, precise, and un-
changeable orderliness. But here it should be noted that the planet does not
pass through the middle regions of quadrants GH and KP without a deviation
in longitude. For, as the variation in the centers intervenes, it must produce a
prosthaphaeresis. Yet the center’s impermanence interposes an obstacle. For
example, suppose that while the center remained at L, the planet started out

from O. Near H it would undergo its greatest deviation, as measured

by eccentricity FL. But it follows from the assumptions that as the planet moves
away from O, it initiates and increases the deviation which must be produced
by the distance FL of the centers. However, as the movable center approaches

its mean position at F, more and more of the anticipated deviation diminishes
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and is overcome so that it entirely disappears near the middle intersections H
and P, where the greatest deviation should have been expected. Nevertheless
(as I admit) even when the deviation becomes small, it is hidden in the sun’s
rays, and is not perceived at all along the circumference of the circle when the
planet rises or sets in the morning or evening. I did not wish to omit this model,
which is no less reasonable than the foregoing model, and which will be highly

suitable for use in connection with the variations in latitude [ VI, 2].

Tables of the prosthaphaereses of the five planets. Chapter 33.

The uniform and apparent motions of Mercury and the other planets have
been demonstrated above and expounded by computations, which will serve as
examples to open the way to calculating the differences in these motions at any
other places. However, for the purpose of facilitating the procedure, for each
planet I have prepared its own Tables, consisting of 6 columns and 30 rows in
steps of 3°% in the usual manner. The first 2 columns will contain the common
numbers not only of the eccentric’s anomaly but also of the parallaxes. The 3rd
column shows the eccentric’s collected, I mean, total differences occurring be-
tween the uniform and nonuniform motions of those circles. In the 4th column
there are the proportional minutes, computed as sixtieths, by which the paral-
laxes increase or decrease on account of the earth’s greater or smaller distance.
In the 5th column there are the prosthaphaereses themselves, which are the
parallaxes occurring at the higher apse of the planet’s eccentric with reference
to the grand circle. In the 6th and last column are found the surpluses by which
the parallaxes occurring at the higher apse are exceeded by those happening at

the eccentric’s lower apse. The Tables are as follows.
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Table of Saturn’s Prosthaphaereses

Parallaxes of the | Surplus of the

Common Correction of the | Proportional | Grand Circle [at | Parallax [at the

Numbers Eccentric Minutes the Higher Apse] | Lower Apse]
3 357 o 20 o o 7 o 2
6 354 o 40 o o 34 o 4
9 351 o 58 o o 51 o 6
12 348 1 17 o 1 7 o 8
15 345 I 36 I I 23 o 10
18 342 I 55 I I 40 o 12
21 339 2 13 I I 56 o 14
24 336 2 31 2 2 I o 16
27 333 2 49 2 2 26 o 18
30 330 3 6 3 2 42 o 19
33 327 3 23 3 2 56 o 21
36 324 3 39 4 3 10 o 23
39 321 3 55 4 3 25 o 24
42 318 4 10 5 3 38 o 26
45 315 4 25 6 3 52 ° 27
48 312 4 39 7 4 5 o 29
5t 309 4 52 8 4 17 o 3
54 306 5 5 9 4 28 o 33
57 303 5 17 10 4 38 o 34
60 300 5 29 I 4 49 o 35
63 297 5 41 12 4 59 o 36
66 294 5 50 3 5 8 o 37
69 291 5 59 14 5 17 o 38
72 288 6 7 16 5 24 o 38
75 285 6 14 17 5 3 o 39
78 282 6 19 18 5 37 o 39
81 279 6 23 19 5 42 o 40
84 276 6 27 21 5 46 o 41
87 273 6 29 22 5 50 o 42
90 270 6 31 23 5 52 o 42
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Table of Saturn’s Prosthaphaereses

Parallaxes of the | Surplus [of the

Common Correction of the | Proportional Grand Circle at | Parallax] at the

Numbers Eccentric Minutes the Higher Apse | Lower Apse
93 267 6 3t 25 5 52 o 43
96 264 6 30 27 5 53 o 44
99 261 6 28 29 5 53 o 45
102 258 6 26 31 5 51 o 46
105 255 6 22 32 5 48 o 46
108 252 6 17 34 5 45 o 45
111 249 6 12 35 5 40 o 45
114 246 6 6 36 5 36 o 44
17 243 5 58 38 5 29 o 43
120 240 5 49 39 5 22 o 42
123 237 5 40 41 5 13 o 41
126 234 5 28 42 5 3 o 40
129 231 5 16 44 4 52 o 39
132 228 5 3 46 4 41 o 37
135 225 4 48 47 4 29 o 35
138 222 4 33 48 4 15 o 34
141 219 4 17 50 4 I o 32
144 216 4 o 5I 3 46 o 30
147 213 3 42 52 3 30 o 28
150 210 3 24 53 3 13 o 26
153 207 3 6 54 2 56 o 24
156 204 2 46 55 2 38 o 22
159 201 2 27 56 2 21 o 19
162 198 2 7 57 2 2 o 7
165 195 I 46 58 I 42 o 14
168 192 I 25 59 I 22 o 2
171 189 I 4 59 I 2 o 9
74 186 o 43 60 o 42 o 7
177 183 o 22 60 o 21 o 4
180 180 o o 60 o o o o
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Table of Jupiter’s Prosthaphaereses

Parallaxes of the | Surplus [of the

Common Correction of the Grand Circle at | Parallax at the

Numbers Eccentric Proportional | the Higher Apse | Lower Apse]
° ° ° Minutes | Seconds ° °

3 357 o 16 o 3 o 28 o 2
6 354 o 31 o 12 o 56 o 4
9 351 o 47 o 18 I 25 o 6
12 348 I 2 o 30 I 53 o 8
15 345 I 18 o 45 2 19 o 10
18 342 I 33 I 3 2 46 o 13
21 339 I 48 I 23 3 13 o 15
24 336 2 2 I 48 3 40 o 7
27 333 2 17 2 18 4 6 o 19
30 330 2 31 2 50 4 32 o 21
33 327 2 44 3 26 4 57 o 23
36 324 2 58 4 10 5 22 o 25
39 321 3 I 5 40 5 47 o 27
42 318 3 23 6 43 6 I o 29
45 315 3 35 7 48 6 34 o 31
48 312 3 47 8 50 6 56 o 34
51 309 3 58 9 53 7 18 o 36
54 306 4 8 10 57 7 39 o 38
57 303 4 17 12 o 7 58 o 40
60 300 4 26 13 10 3 7 o 42
63 297 4 35 14 20 8 35 o 44
66 294 4 42 15 30 3 52 o 46
69 291 4 50 16 50 9 8 o 48
72 288 4 56 18 10 9 22 o 50
75 285 5 I I9 17 9 35 o 52
78 282 5 5 20 40 9 47 o 54
81 279 5 9 22 20 9 59 o 55
84 276 5 12 23 50 10 3 o 56
87 273 5 14 25 23 10 17 o 57
90 270 5 15 26 57 10 24 o 58
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Table of Jupiter’s Prosthaphaereses

Parallaxes of [the | Surplus [of the

Common Correction of the Grand] Circle [at | Parallax] at [the

Numbers Eccentric Proportional | the Higher Apse] | Lower Apse]

° ° ° Minutes | Seconds ° °
93 267 5 15 28 33 10 25 o 59
96 264 5 15 30 12 10 33 I o
99 261 5 14 31 43 10 34 1 1
102 258 5 12 33 17 10 34 I I
105 255 5 10 34 50 10 33 I 2
108 252 5 6 36 21 10 29 I 3
I 249 5 I 37 47 10 23 I 3
114 246 4 55 39 o 10 15 I 3
117 243 4 49 40 25 10 5 1 3
120 240 4 41 41 50 9 54 I 2
123 237 4 32 43 18 9 41 I I
126 234 4 23 44 46 9 25 I o
129 231 4 13 46 I 9 3 o 59
132 228 4 2 47 37 3 56 o 58
135 22§ 3 50 49 2 8 27 o 57
138 222 3 38 50 22 8 5 o 55
141 219 3 25 51 46 7 39 o 53
144 216 3 13 53 6 7 12 o 50
147 213 2 59 54 10 6 43 o 47
150 210 2 45 55 15 6 13 o 43
153 207 2 30 56 12 5 41 o 39
156 204 2 15 57 o 5 7 o 35
159 201 1 59 57 37 4 32 o 31
162 198 I 43 58 6 3 56 o 27
165 195 I 27 58 34 3 18 o 23
168 192 I 11 59 3 2 40 o 19
171 189 o 53 59 36 2 o o 15
74 186 o 35 59 58 I 20 o I
177 183 o 7 60 o o 40 o 6
180 180 o o 60 o o o o o
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Table of Mars’ Prosthaphaereses page 175v
Parallaxes [of the | Surplus of the i

Common Correction of the Grand] Circle [at | Parallax [at the i i
Numbers Eccentric Proportional | the Higher Apse] | Lower Apse] 1 ol st
° ° ° Minutes | Seconds ° ‘ °

3 357 o 32 o o I 8 o 8

6 354 I 5 o 2 2 16 o 7

9 351 I 37 o 7 3 24 o 25

12 348 2 8 o 15 4 31 o 33

15 345 2 39 o 28 5 38 o 41

18 342 3 10 o 42 6 45 o 50

21 339 3 41 o 57 7 52 o 59

24 336 4 1I I 13 8 58 I 8

27 333 4 41 I 34 10 5 I 16

30 330 5 10 2 I I I I 25

33 327 5 38 2 3t 2 16 I 34

36 324 6 6 3 2 13 22 I 43

39 321 6 32 3 32 14 26 I 52

42 318 6 58 4 3 15 31 2 2

45 315 7 23 4 37 16 35 2 I

48 312 7 47 5 16 7 39 2 20

5I 309 8 10 6 2 18 42 2 30

54 306 8 32 6 50 19 45 2 40

57 303 8 53 7 39 20 47 2 50

60 300 9 12 8 30 21 49 3 o

63 297 9 30 9 27 22 50 3 I

66 294 9 47 10 25 23 48 3 22

69 291 10 3 53 28 24 47 3 34

72 288 10 19 12 33 25 44 3 46

75 285 10 32 13 38 26 40 3 59

78 282 10 42 14 46 27 35 4 I

81 279 10 50 16 4 28 29 4 24

84 276 10 56 17 24 29 21 4 36

87 273 I I 18 45 30 12 4 50

90 270 I 5 20 8 31 o 5 5
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Table of Mars’ Prosthaphaereses

Parallaxes of [the | Surplus [of the

Common Correction of the Grand] Circle [at | Parallax at the

Numbers Eccentric Proportional | the Higher Apse] | Lower Apse]

° ° ° Minutes | Seconds ° °
93 267 I 7 21 32 31 45 5 20
96 264 I 3 22 58 32 30 5 35
99 261 I 7 24 32 33 13 5 5t
102 258 I 5 26 7 33 53 6 7
105 255 I I 27 43 34 30 6 25
108 252 10 56 29 21 35 3 6 45
I 249 10 45 3T 2 35 34 7 4
114 246 10 33 32 46 35 59 7 25
1y 243 10 11 34 31 36 21 7 46
120 240 10 7 36 16 36 37 3 I
123 237 9 51 38 I 36 49 8 34
126 234 9 33 39 46 36 54 8 59
129 231 9 13 41 30 36 53 9 24
132 228 8 50 43 12 36 45 9 49
135 22§ 8 27 44 50 36 25 10 7
138 222 8 2 46 26 35 59 10 47
141 219 7 36 48 I 35 25 I 15
144 216 7 7 49 35 34 30 I 45
147 213 6 37 51 2 33 24 12 12
150 210 6 7 52 22 32 3 2 35
153 207 5 34 53 38 30 26 2 54
156 204 5 o 54 50 28 5 13 28
159 201 4 25 56 o 26 3 13 7
162 198 3 49 57 6 23 28 12 47
165 195 3 12 57 54 20 21 12 12
168 192 2 35 58 22 16 51 10 59
171 189 I 57 58 50 13 I 9 I
74 186 I 18 59 11 8 51 6 40
177 183 o 39 59 44 4 32 3 28
180 180 o o 60 o o o o o
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Table of Venus’ Prosthaphaereses

Parallaxes of [the | Surplus [of the

Common Correction of the Grand] Circle [at | Parallax at the

Numbers Eccentric Proportional | the Higher Apse] | Lower Apse]
° ° ° Minutes | Seconds ° °

3 357 o 6 o o I 15 o I
6 354 o 13 o o 2 30 o 2
9 35T o 19 o 10 3 45 o 3
12 348 o 25 o 39 4 59 o 5
15 345 o 31 o 58 6 13 o 6
18 342 o 36 I 20 7 28 o 7
21 339 o 42 1 39 8 42 o 9
24 336 o 48 2 23 9 56 o I
27 333 o 53 2 59 I 10 o 2
30 330 o 59 3 38 12 24 o 13
33 327 I 4 4 18 13 37 o 4
36 324 I 10 5 3 14 50 o 16
39 321 I 15 5 45 16 3 ° 17
42 318 I 20 6 32 7 16 o 18
45 315 I 25 7 22 18 28 o 20
48 312 I 29 8 18 19 40 o 21
51 309 I 33 9 31 20 52 o 22
54 306 I 36 10 48 22 3 o 24
57 303 I 40 12 8 23 14 o 26
60 300 I 43 13 32 24 24 o 27
63 297 I 46 15 8 25 34 o 28
66 294 I 49 16 35 26 43 o 30
69 291 I 52 18 o 27 52 o 32
72 288 I 54 19 33 28 57 o 34
75 285 I 56 21 3 30 4 o 36
78 282 I 58 22 32 31 9 o 38
81 279 1 59 24 7 32 13 o 41
84 276 2 o 25 30 33 17 o 43
87 273 2 o 27 5 34 20 o 45
90 270 2 o 28 28 35 21 o 47
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Table of Venus’ Prosthaphaereses

Parallaxes of [the | Surplus [of the

Common Correction of the Grand Circle at | Parallax at the

Numbers Eccentric Proportional | the Higher Apse] | Lower Apse]

° ° ° Minutes | Seconds ° °
93 267 2 o 29 58 36 20 o 50
96 264 2 o 31 28 37 7 o 53
99 261 I 59 32 57 38 13 o 55
102 258 I 58 34 26 39 7 o 58
105 255 I 57 35 55 40 o I o
108 252 I 55 37 23 40 49 I 4
111 249 I 53 38 52 41 36 I 8
14 246 I 51 40 19 42 18 I I
117 243 1 48 41 45 42 59 1 14
120 240 I 45 43 10 43 35 I 18
123 237 I 42 44 37 44 7 I 22
126 234 I 39 46 6 44 32 I 26
129 231 1 35 47 36 44 49 1 30
132 228 I 31 49 6 45 4 I 36
135 22§ I 27 50 12 45 10 I 41
138 222 I 22 51 17 45 5 I 47
141 219 I 17 52 3 44 5t 1 53
144 216 1 12 53 48 44 22 2 o
147 213 I 7 54 28 43 36 2 6
150 210 I I 55 o 42 34 2 13
153 207 o 55 55 57 41 2 2 19
156 204 o 49 56 47 39 20 2 34
159 201 o 43 57 33 36 58 2 27
162 198 o 37 58 16 33 58 2 27
165 195 o 3 58 59 30 14 2 27
168 192 o 25 59 39 25 42 2 16
171 189 o 19 59 48 20 20 I 56
74 186 o 13 59 54 14 7 I 26
177 183 o 7 59 58 7 16 o 46
180 180 o o 60 o o 16 o o
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Table of Mercury’s Prosthaphaereses

page 177v

Parallaxes [of the | Surplus of the

Common Correction of the Grand Circle at | Parallax [at the

Numbers Eccentric Proportional | the Higher Apse] | Lower Apse]

° ° ° Minutes | Seconds ° °
93 267 2 o 29 58 36 20 o 50
96 264 2 o 31 28 37 7 o 53
99 261 I 59 32 57 38 13 o 55
102 258 I 58 34 26 39 7 o 58
105 255 I 57 35 55 40 o I o
108 252 I 55 37 23 40 49 I 4
111 249 I 53 38 52 41 36 I 8
14 246 I 51 40 19 42 18 I I
117 243 1 48 41 45 42 59 1 14
120 240 I 45 43 10 43 35 I 18
123 237 1 42 44 37 44 7 1 22
126 234 I 39 46 6 44 32 I 26
129 231 1 35 47 36 44 49 I 30
132 228 I 31 49 6 45 4 I 36
135 22§ I 27 50 12 45 10 I 41
138 222 I 22 51 17 45 5 I 47
141 219 I 17 52 3 44 5t 1 53
144 216 1 12 53 48 44 22 2 o
147 213 1 7 54 28 43 36 2 6
150 210 I I 55 o 42 34 2 13
153 207 o 55 55 57 41 2 2 19
156 204 o 49 56 47 39 20 2 34
159 201 o 43 57 33 36 58 2 27
162 198 o 37 58 16 33 58 2 27
165 195 o 31 58 59 30 14 2 27
168 192 o 25 59 39 25 42 2 16
171 189 o 19 59 48 20 20 I 56
74 186 o 13 59 54 14 7 I 26
177 183 o 7 59 58 7 16 o 46
180 180 o o 60 o o 16 o o
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Table of Mercury’s Prosthaphaereses

Parallaxes [of the | Surplus of the

Common Correction of the Grand Circle at | Parallax [at the

Numbers Eccentric Proportional | the Higher Apse] | Lower Apse]

° ° ° Minutes | Seconds ° ’ °
93 267 3 o 53 3 18 23 4 3
96 264 3 I 55 4 18 37 4 I
99 261 3 o 56 14 18 48 4 19
102 258 2 59 57 14 18 56 4 27
105 255 2 58 58 I 19 4 34
108 252 2 56 58 40 19 4 42
111 249 2 55 59 14 19 3 4 49
114 246 2 53 59 40 18 59 4 54
117 243 2 49 59 57 18 53 4 58
120 240 2 44 60 o 18 42 5 2
123 237 2 39 59 49 18 27 5 4
126 234 2 34 59 35 18 8 5 6
129 231 2 28 59 19 17 44 5 9
132 228 2 22 58 59 17 17 5 9
135 225 2 16 58 32 16 44 5 6
138 222 2 10 57 56 16 7 5 3
I41 219 2 3 56 41 15 25 4 59
144 216 I 35 55 27 4 38 4 52
147 213 I 47 54 55 13 47 4 41
150 210 I 38 54 25 2 52 4 26
153 207 I 29 53 54 I 51 4 10
156 204 I 19 53 23 10 44 3 53
159 201 I 10 52 54 9 34 3 33
162 198 I o 52 33 8 20 3 10
165 195 o 51 52 18 7 4 2 43
168 192 o 41 52 8 5 43 2 14
171 189 o 31 52 3 4 19 I 43
74 186 o 21 52 2 2 54 I 9
177 183 o 10 52 2 I 27 o 35
180 180 o o 52 2 o o o o

How to compute the longitudinal places of these five planets. ~Chapter 34.
By means of these Tables so drawn up by me, we shall compute the longitudi-
nal places of these five planets without any difficulty. For nearly the same com-
putational procedure applies to them all. Yet in this respect the three outer
planets differ somewhat from Venus and Mercury.

Hence let me speak first about Saturn, Jupiter, and Mars, for which the
computation proceeds as follows. For any given time seek the mean motions, I
mean, the sun’s simple motion and the planet’s parallactic motion, by the method

explained above [III, 14; V, 1]. Then subtract the place of the higher apse of the
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planet’s eccentric from the sun’s simple place. From the remainder subtract the
parallactic motion. The resulting remainder is the anomaly of the planet’s ec-
centric. We look up its number among the common numbers in either of the
first two columns of the Table. Opposite this number we take the normaliza-
tion of the eccentric from the 3rd column, and the proportional minutes from
the following column. We add this correction to the parallactic motion, and
subtract it from the eccentric’s anomaly, if the number with which we entered
the Table is found in the 1st column. Conversely, we subtract it from the paral-
lactic anomaly and add it to the eccentric’s anomaly, if the [initial] number
occupied the 2nd column. The sum or remainder will be the normalized anoma-
lies of the parallax and the eccentric, while the proportional minutes are re-
served for a purpose soon to be explained.

Then we look up also this normalized parallactic anomaly among the com-
mon numbers in the first [two columns], and opposite it in the 5th column we
take the parallactic prosthaphaeresis, together with its surplus, placed in the
last column. In accordance with the number of proportional minutes we take
the proportional part of this surplus. We always add this proportional part to
the prosthaphaeresis. The sum is the planet’s true parallax. This must be sub-
tracted from the normalized parallactic anomaly if that is less than a semicircle,
or added if the anomaly is greater than a semicircle. For in this way we shall
have the planet’s true and apparent distance westward from the sun’s mean
place. When this distance is subtracted from the [place of the] sun, the remain-
der will be the required place of the planet

in the sphere of the fixed stars. Finally, if the precession of the equinoxes is
added to the place of the planet, its distance from the vernal equinox will be
ascertained.

In the cases of Venus and Mercury, instead of the eccentric’s anomaly we
use the higher apse’s distance from the sun’s mean place. With the aid of this
anomaly we normalize the parallactic motion and the eccentric’s anomaly, as
has already been explained. But the eccentric’s prosthaphaeresis, together with
the normalized parallax, if they are of one direction or kind, are simultaneously
added to or subtracted from the sun’s mean place. However, if they are of dif-
terent kind, the smaller is subtracted from the larger. Operate with the remain-
der as I just explained about the additive or subtractive property of the larger
number, and the result will be the apparent place of the required planet.
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The stations and retrogradations of the five planets. Chapter 35.

Evidently there is a connection between the explanation of the [planets’] mo-
tion in longitude and the understanding of their stations, regressions, and ret-
rogradations, and of the place, time, and extent of these phenomena. These
topics too were discussed not a little by astronomers, especially Apollonius of
Perga [Ptolemy, Syntaxis, X1I, 1]. But their discussion proceeded as though the
planets moved with only one nonuniformity, that which occurs with respect to
the sun, and which I have called the parallax due to the motion of the earth’s
grand circle.

Suppose the earth’s grand circle to be concentric with the planets’ circles, by
which all the planets are carried at unequal speeds in the same direction, that is,
eastward. Also assume that a planet, like Venus and Mercury, inside the grand
circle is faster on its own orbit than the earth’s motion. From the earth draw a
straight line intersecting the planet’s orbit. Bisect the segment within the orbit.
This half-segment has the same ratio to the line extending from our observa-
tory, which is the earth, to the lower and convex arc of the intersected orbit as
the earth’s motion has to the planet’s velocity. The point then made by the line
so drawn to the perigean arc of the planet’s circle separates the retrogradation
from the direct motion, so that the planet gives the appearance of being sta-
tionary when it is located in that place.

The situation is similar in the remaining three outer planets, whose motion

1s slower

than the earth’s speed. A straight line drawn through our eye will intersect the
grand circle so that the half-segment within that circle has the same ratio to
the line extending from the planet to our eye located on the nearer and convex
arc of the grand circle as the planet’s motion has to the earth’s speed. To our eye
the planet at that time and place will give the impression of standing still.

But if the ratio of the half-segment within the aforesaid [inner] circle to
the remaining outer segment exceeds the ratio of the earth’s speed to the veloc-
ity of Venus or Mercury, or the ratio of the motion of any of the three outer
planets to the earth’s speed, the planet will advance eastward. On the other
hand, if the [first] ratio is smaller [than the second], the planet will retrograde
westward.

For the purpose of proving the foregoing statements Apollonius adduces a
certain auxiliary theorem. Although it conforms to the hypothesis of a station-

ary earth, nevertheless it is compatible also with my principles based on the
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mobility of the earth, and therefore I too shall use it.
I can enunciate it in the following form. Suppose
that in a triangle a longer side is divided so that one
of the segments is not less than the adjoining side.
The ratio of that segment to the remaining segment

will exceed the inverse ratio of the angles at the di-

vided side [the angle at the remaining segment: the
angle at the adjoining side]. In triangle ABC let the
longer side be BC. On it take CD not less than AC.
I say that CD:BD > angle ABC:angle BCA.

The proof proceeds as follows. Complete paral-
lelogram ADCE. Extend BA and CE to meet at

point F. With center A and radius AE describe a
circle. This will pass through C or beyond it, since

'B

AE is not smaller than AC. For the present let the

circle pass through C, and let it be GEC. Triangle AEF is greater than sector
AEG. But triangle AEC is smaller than sector AEC. Therefore, triangle
AEF:[triangle] AEC > sector AEG:sector AEC. But triangle AEF:triangle
AEC = base FE:base EC. Therefore FE:EC > angle FAE:angle EAC. But
FE:EC = CD:DB, since angle FAE = angle ABC, and angle EAC = angle
BCA. Therefore

A
CD:DB > angle ABC:angle ACB. The [first] B N page 180r
d
CD, that is, AE, is assumed not equal to AC, I'
but AE is taken greater than AC.
Now around D as center let ABC be Ve-

nus’ or Mercury’s circle. Outside the circle let

ratio will clearly be much greater, moreover, if

the earth E move around the same center D.
From our observatory at E draw straight line
ECDA through the center of the circle. Let A
be the place most distant from the earth, and
C the place nearest to the earth. Assume that

the ratio DC:CE is greater than the ratio of

the observer’s motion to the planet’s speed.
Therefore a line EFB can be found such that
Y2 BF:FE = observer’s motion:planet’s speed.
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For as line EFB recedes from center D, along FB it shrinks and along EF it
lengthens until the required condition occurs. I say that when the planet is
located at point F it will give us the appearance of being stationary. However
little arc we choose on either side of F, in the direction of the apogee we shall
find it progressive, but retrogressive if toward the perigee.

First, take arc FG extending toward the apogee. Prolong EGK. Join BG,
DG, and DF. In triangle BGE, segment BF of the longer side BE exceeds BG.
Hence BE:FE > angle FEG:angle GBF. Therefore % BF:FE > angle FEG:2 X
angle GBF = angle GDF. But %2 BF:FE = earth’s motion:planet’s motion. There-
tore angle FEG:angle GDF < earth’s speed:planet’s speed. Consequently, the
angle which has the same ratio to angle FDG as the ratio of the earth’s motion
to the planet’s motion exceeds angle FEG. Let this greater angle = FEL. Hence,
during the time in which the planet traverses arc GF of the circle, our line of

sight will be thought

to have passed through an opposite distance, that lying between line EF and
line EL. Clearly, in the same interval in which arc GF has transported the
planet, as seen by us, westward through the smaller angle FEG, the earth’s
passage has drawn the planet back eastward through the greater angle FEL. As
a result the planet is still retrojected through angle GEL, and seems to have
progressed, not to have, remained stationary.

The reverse of this proposition will clearly be demonstrated by the same
means. In the same diagram suppose that we take %2 GK:GE = earth’s
motion:planet’s speed. Assume that arc GF extends toward the perigee from
straight line EK. Join KF, making triangle KEF. In it GE is drawn longer than
EF. KG:GE < angle FEG:angle FKG. So also 2 KG:GE < angle FEG:2 x
angle FKG = angle GDF. This relation is the reverse of that demonstrated
above. By the same means it will be established that angle GDF:angle FEG <
planet’s speed:speed of the [line of] sight. Accordingly, when these ratios be-
come equal as angle GDF becomes greater, the planet will likewise execute a
greater movement westward than the forward motion demands.

These considerations make it clear also that if we assume arcs FC and CM
to be equal, the second station will be at point M. Draw line EMN. Just like %2
BF:FE, so too %2 MN:ME = earth’s speed:planet’s speed. Therefore, points F
and M will occupy both stations, delimit the whole of arc FCM as retrogres-
sive, and the rest of the circle as progressive. It also follows that at whatever

distances DC:CE does not exceed the ratio earth’s speed:planet’s speed, an-
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other straight line cannot be drawn having a ratio equal to the ratio earth’s
speed:planet’s speed, and the planet will seem to be neither stationary nor ret-
rogressive. For in triangle DGE, when straight line DC is assumed to be not
smaller than EG, angle CEG:angle CDG < DC:CE. But DC:CE does not
exceed the ratio earth’s speed:planet’s speed. Therefore, angle CEG:CDG <
earth’s speed:planet’s speed. When this occurs,

the planet will move eastward, and we will not find anywhere on the planet’s
orbit an arc through which it would seem to retrograde. The foregoing discus-
sion applies to Venus and Mercury, which are inside the grand circle.

For the three other outer planets the proof proceeds in the same way and
with the same diagram (only the designations being changed). We make ABC
the earth’s grand circle and the orbit of our observatory. In E we put the planet,
whose motion on its own orbit is slower than the speed of our observatory on

the grand circle. As for the rest, the proof will proceed in all respects as before.

How the times, places, and arcs of retrogression are determined. ~Chapter 36.
Now if the circles which carry the planets were concentric with the grand circle,
what the preceding demonstrations promise would readily be confirmed (since the
ratio planet’s speed:observatory’s speed would always remain the same). However,
these circles are eccentric, and this is the reason why the apparent motions are

nonuniform. Consequently we must everywhere assume disparate and normalized

motions with variations in their velocities, and use
them in our proofs, and not simple and uniform

motions, unless the planet happens to be near its ,ﬂ*

|\‘\-‘_‘__—_‘ _‘_._r_
\ C
straight line ECDA through the center of the ‘-
grand circle. Also draw EFB, and DG perpen- \

dicular to EFB; % BF = GF. GF:EF = planet’s

momentary speed observatory’s speed, which ex- \

middle longitudes, the only places on its orbit where

it seems to be carried with a mean motion.

L

I'shall demonstrate these propositions by the

e

'\

example of Mars, which will clarify the retro-

e

gradations of the other planets too. Let the grand
circle be ABC, on which our observatory is situ-

ated. Put the planet at point E, from which draw

e

ceeds the planet’s speed.
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Our task is to find FC = %2 of the arc of retrogression, or ABF, in order to
know the planet’s greatest [angular] distance from A when the planet is sta-
tionary, and the amount of angle FEC. For, from this information, we shall
predict the time and place of this planetary phenomenon. Put the planet near
the eccentric’s middle apse, where its observed motions in longitude and anomaly
differ little from the uniform motions.

In the case of the planet Mars,

when its mean motion = 1? 8" 7" = line GE its parallactic motion, that is, the
motion of our [line of] sight: planet’s mean motion = 1P = straight line EF.
Hence the whole of EB = 3P 16" 14", and rectangle BE X EF likewise = 3716 14"
But I have shown [V, 19] that radius DA = 6,580P whereof DE = 10,000".

However, with DE = 60F, in such units AD = 39? 29".The whole of AE:EC
= 99 29":20" 31. A rectangle formed from these [segments AE x EC] = 2,041°
4, known = BE x EF. The result of the comparison, I mean, the division of
2,041° 4" by 3P 1614 = 624F 4', and a side of it = 24P 58" 52" = EF in units whereof
DE was assumed = 60oP. However, with DE = 10,000F, EF = 4,163F 5" whereof
DF = 6,580r.

Since the sides of triangle DEF are given, we shall have angle DEF = 27°15°
= angle of planet’s retrogradation, and CDF = angle of parallactic anomaly = 16°
50". At its first station the planet appears along line EF, and along EC at oppo-
sition. If the planet did not move eastward at all, arc CF = 16° 50" would com-
prise the 27°15” of retrogradation found in angle AEF. However, in accordance
with the established ratio planet’s speed:observatory’s speed, to the parallactic
anomaly of 16° 50" corresponds a planetary longitude of approximately 19° 6’
39”. When this quantity is subtracted from 27° 15°, the remainder from the
second station to opposition = 8° 8’, and about 36% days. In that time that
longitude of 19° 6" 39" is traversed, and hence the entire retrogression of 16°16°
is completed in 73 days.

The foregoing analysis is made for the eccentric’s middle longitudes.

For other places the procedure is similar, but the planet’s momentary veloc-
ity as determined by the place is always applied, as I pointed out [near the
beginning of V, 36].

Hence, the same method of analysis is available for Saturn, Jupiter, and
Mars, no less than for Venus and Mercury, provided that we put the observa-
tory in the planet’s place and the planet in the observatory’s place. Naturally, in
these orbits enclosed by the earth, what occurs is the opposite of what happens
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in the orbits surrounding the earth. Therefore, let the foregoing remarks suf-
fice, lest I repeat the same song over and over again.

Nevertheless, as the planet’s motion varies with the line of sight, it pro-
duces no small difficulty and uncertainty concerning the stations. That assump-
tion on the part of Apollonius [V, 35] provides us no relief from these perplexi-
ties. Hence I do not know whether it would not be better to investigate the
stations simply and in relation to the nearest place. In like manner we seek the
opposition of a planet by its impingement on the line of the sun’s mean motion,
or the conjunction of any planets from the known quantities of their motions.

I leave this problem for everybody to pursue to his own satisfaction.

End of the fifth book of the Revolutions.
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Nicolaus Copernicus

Revolutions
Book Six

I have to the best of my ability indicated how the assumed revolution of the
earth influences and affects the planets’ apparent motion in longitude, and how
it forces all these phenomena into a precise and necessary regularity. It remains
for me to consider the movements which impart to the planets a deviation in
latitude, and to show how the earth’s motion exercises control over these phe-
nomena too, and prescribes rules for them also in this division. This division of
the science is indispensable because the planets’ deviations produce no small
modification in the risings and settings, first visibilities, occultations, and other
phenomena which were explained in general above. Indeed, the planets’ true
places are said to be known when their longitude is determined together with
their latitudinal deviation from the ecliptic. What the ancient astronomers be-
lieved they had demonstrated here too by means of a stationary earth, I shall
accomplish perhaps more compactly and more appropriately by assuming that

the earth moves.

General explanation of the five planets’ deviation in latitude. Chapter 1.

In all these planets the ancients found a twofold deviation in latitude, cor-
responding to the twofold longitudinal nonuniformity of each of these planets.
One [of these latitudinal deviations, in their opinion,] was produced by the
eccentrics, and the other by the epicycles. Instead of these epicycles I have
accepted the earth’s one grand circle (which has already been mentioned of-
ten). [I did] not [accept the grand circle] because it deviates in any way from
the plane of the ecliptic, with which it is conjoined once and for all, since they
are identical. On the other hand, [I did accept the grand circle] because the

planets’ orbits are inclined to this plane

at an angle which is not fixed, and this variation is geared to the motion and
revolutions of the earth’s grand circle.

The three outer planets, Saturn, Jupiter, and Mars, however, move in longi-
tude according to certain principles different from [those governing the longi-
tudinal motion of | the other two. In their latitudinal motion, too, the outer

planets differ not a little. Hence the ancients first investigated the location and
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quantity of the extreme limits of their northern latitudes. For Saturn and Jupi-
ter, Ptolemy found those limits near the beginning of the Balance, but for Mars
near the end of the Crab close to the eccentric’s apogee [ Synzaxis, XIII, 1].

o

In our time, however, I have found these northern limits for Saturn at 7
within the Scorpion, for Jupiter at 27° within the Balance, and for Mars at 277°
within the Lion, just as the apogees have likewise shifted in the period extend-
ing to us [V, 7, 12, 16], since the motion of those circles is followed by the
inclinations and cardinal points of the latitudes. At a normalized or apparent
quadrant’s distance from these limits [these planets] seem to make absolutely
no deviation in latitude, wherever the earth may happen to be at that time. At
these middle longitudes, then, these planets are understood to be at the inter-
section of their orbits with the ecliptic, like the moon at its intersections with
the ecliptic. In the present instance Ptolemy [ Synzaxis, XIII, 1] calls these inter-
sections the “nodes”; from the ascending node the planet enters the northern
regions, and from the descending node it crosses over into the southern re-
gions. [These deviations do] not [occur] because the earth’s grand circle, which
always remains invariably in the plane of the ecliptic, produces any latitude in
these planets. On the contrary, the entire deviation in latitude comes from them,
and reaches its peak at the places midway between the nodes. When the plan-
ets are seen there in opposition to the sun and culminating at midnight, as the
earth approaches they always execute a greater deviation than in any other po-
sition of the earth, moving northward in the northern hemisphere and south-
ward in the southern hemisphere. This deviation is greater than is required by
the earth’s approach and withdrawal. This circumstance led to the recognition
that the inclination of the planets’ orbits is not fixed, but shifts in a certain
motion of libration commensurable with the revolutions of the earth’s grand
circle, as will be explained a little later on [ VI, 2].

Venus and Mercury, however, seem to deviate in certain other ways, al-
though they conform to a precise rule linked with their middle, higher, and
lower apsides. For at their middle longitudes, that is, when the line of the sun’s
mean motion is at a quadrant’s distance from their higher or lower apse, and
the planets themselves in the evening or morning are at the distance of a quad-

rant of their orbits away from the same line of [the sun’s] mean motion,
the ancients found in them no deviation from the ecliptic. Through this cir-
cumstance the ancients recognized that these planets were then at the intersec-

tion of their orbits and the ecliptic. Since this intersection passes through their
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apogees and perigees, when they are farther from or closer to the earth, at those
times they execute conspicuous deviations. But these are at their maximum
when the planets are at their greatest distance from the earth, that is, around
first visibility in the evening or setting in the morning, when Venus is seen
farthest north, and Mercury farthest south.

On the other hand, at a place nearer to the earth, when they set in the
evening or rise in the morning, Venus is to the south, and Mercury to the
north. Conversely, when the earth is opposite this place and in the other mid-
dle apse, that is, when the anomaly of the eccentric = 270°, Venus appears to the
south at a greater distance from the earth, and Mercury to the north. At a place
nearer to the earth, Venus appears to the north, and Mercury to the south.

But when the earth approached the apogees of these planets, Ptolemy found
Venus’ latitude northern in the morning and southern in the evening. The op-
posite was true for Mercury, whose latitude was southern in the morning and
northern in the evening. At the opposite place, [with the earth near these plan-
ets’] perigee, these directions are similarly reversed, so that Venus as the morn-
ing star is seen in the south, and as evening star in the north, whereas in the
morning Mercury is to the north, and to the south in the evening. However,
[with the earth] in both these places [the apogee and perigee of these planets],
the ancients found Venus’ deviation always greater to the north than to the
south, and Mercury’s greater to the south than to the north.

On account of this fact, for this situation [with the earth at the planetary
apogees and perigees], the ancients devised a twofold latitude, and in general a
threefold latitude. The first, which occurs at the middle longitudes, they called
the “declination.” The second, which takes place at the higher and lower apsides,
they named the “obliquation.” The last, linked with the second, they labeled
the “deviation,” always to the north for Venus, and to the south for Mercury.
Between these four limits [the higher, lower, and two middle apsides] the lati-
tudes mingle with one another, alternately increasing and decreasing, and give
way to one another. To all these phenomena I shall assign the appropriate cir-

cumstances.

The theory of the circles by which these planets are moved in

latitude. Chapter 2.

The orbits of these five planets, then, must be assumed to be tilted at a variable
but regular inclination to the plane of the ecliptic, the intersection being a

diameter of the ecliptic.
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Around that intersection as an axis, in the cases of Saturn, Jupiter, and Mars,
the angle of intersection undergoes a certain oscillation, such as I demonstrated
in connection with the precession of the equinoxes [1II, 3]. In these three plan-
ets, however, it is simple and commensurable with the motion in parallax, with

which it increases and decreases in a definite period. Thus, whenever the earth

is at its nearest to the planet,
namely, when this culminates
at midnight, the inclination
of the planet’s orbit reaches
its maximum; its minimum,
in the opposite position; and

its mean, halfway between. As

a result, when the planet is at
the limit of its greatest north-
ern or southern latitude, its
latitude appears much greater

with the earth close than

when it is at its greatest dis-

tance. The sole cause of this

variation could be the earth’s
unequal distance, on the principle that things look bigger when nearer than
when farther away. However, the latitudes of these planets increase and de-
crease with a greater variation [than would be produced solely by variations in
the earth’s distance]. This cannot happen unless the tilt of their orbits also
oscillates. But, as I said above [III, 3], in motions which oscillate, a mean must
be accepted between the extremes.

For the purpose of clarifying these remarks, in the plane of the ecliptic let
ABCD be the grand circle with its center at E. Let the planet’s orbit be in-
clined to the grand circle. Let FGKL be the orbit’s mean and abiding declina-
tion, with F at the northern limit of its latitude, K at the southern limit, G at
the descending node of the intersection, and L at the ascending node. Let the
intersection [of the planet’s orbit and the earth’s grand circle] be BED. Extend
BED along straight lines GB and DL. These four limits are not to shift except
with the motion of the apsides. The planet’s motion in longitude, however, is to
be understood as occurring not in the plane of circle FG, but in another circle

OP, concentric with FG and inclined to it.
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Let these circles intersect each other in that same straight line GBDL. There-
fore, while the planet is carried on circle OP, that circle at times coincides with
plane FK, and as a result of the motion in libration crosses over in both direc-
tions, and for that reason makes the latitude appear to vary.

Thus, first let the planet be at its greatest northern latitude at point O and
at its closest to the earth, situated at A. At that time the planet’s latitude will
increase in accordance with angle OGF = the greatest inclination of orbit OGP.
Its motion is an approach and withdrawal, because by hypothesis it is com-
mensurable with the motion in parallax. Then if the earth is in B, O will coin-
cide with F, and the planet’s latitude will appear smaller than before in the
same place. It will even appear much smaller if the earth is at point C. For O
will cross over to the outermost opposite part of its oscillation, and it will leave
only as much latitude as exceeds the subtractive libration of the northern lati-
tude, namely, the angle equal to OGF. Thereafter throughout CDA, the re-
maining semicircle, the northern latitude of the planet situated near F will
increase until [the earth] returns to the first point A, from which it started out.

When the planet is located in the south near point K, its behavior and
vicissitudes will be the same, when the earth’s motion is taken as beginning at
C. But suppose that the planet is in either node G or L, in opposition to or
conjunction with the sun. Even though at that time circles FK and OP may be
at their greatest inclination to each other, no latitude will be perceived in the
planet since it occupies an intersection of the circles. From the foregoing re-
marks it is readily understood (I believe) how the planet’s northern latitude
decreases from F to G, and its southern latitude increases from G to K, while
disappearing completely and crossing over to the north at L.

The three outer planets behave in the foregoing manner. Just as Venus
and Mercury differ from them in longitude, so there is no little difference in
latitude, because [the grand circle] is intersected by the orbits of the inner
planets at their apogees and perigees. At their middle apsides, on the other
hand, their greatest inclinations, like those of the outer planets, are varied by
an oscillation. The inner planets, however, undergo an additional oscillation
different from the former. Nevertheless, both are commensurable with the
earth’s revolutions, but not in the same way. For, the first oscillation has the
property that while the earth returns once to the apsides of the inner planets,
the motion in oscillation revolves twice, having as its axis the aforementioned
fixed intersection through the apogees and perigees. As a result, whenever

the line of the sun’s mean motion is in their perigee or apogee, the angle of
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the intersection attains its maximum, whereas it is always at its minimum in

the middle longitudes.

On the other hand, the second oscillation, which is superimposed on the
first, differs from it in having a movable axis. As a result, when the earth is
situated in a middle longitude of Venus or Mercury, the planet is always on the
axis, that is, on this oscillation’s intersection. By contrast, the planet is at its

greatest divergence [from the

page 184v

axis of the second oscillation]
when the earth is aligned with
the planet’s apogee or perigee,
Venus inclining always to the
north, as I said [VI, 1], and
Mercury to the south. Yet at

those times these planets
would have had no latitude
arising from the first and sim-
ple declination.

Thus, for example, sup-

pose that the sun’s mean mo-
tion is at Venus’ apogee, and the planet is in the same place. Clearly, since at
that time the planet is at the intersection of its orbit with the plane of the
ecliptic, it would have no latitude due to the simple declination and first oscil-
lation. But the second oscillation, which has its intersection or axis along a
transverse diameter of the eccentric, superimposes its greatest divergence on
the planet, because it cuts at right angles the diameter which passes through
the higher and lower apsides. On the other hand, suppose that the planet is at
either of the points at a quadrant’s distance [from its apogee] and near the
middle apsides of its orbit. At that time the axis of this [second] oscillation will
coincide with the line of the sun’s mean motion. To the northern divergence
Venus will add the greatest deviation, which it will subtract from the southern
divergence, leaving it diminished. In this way the deviation’s oscillation is com-
mensurate with the earth’s motion.

To make the foregoing remarks likewise easier to understand, reproduce
ABCD, the grand circle; FGKL, Venus’ or Mercury’s orbit, eccentric to circle
ABC and inclined to it with a mean obliquity; and their intersection FG, through

E the orbit’s apogee, and G, its perigee. For the sake of a more convenient
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demonstration, let us first take the inclination of GKF, the eccentric orbit, to
be simple and constant or, if preferred, halfway between the minimum and

maximum, except that

intersection FG shifts with the motion of the perigee and apogee. When the
earth is on the intersection, that is, at A or C, and the planet is on the same line,
it would obviously have no latitude at that time. For its entire latitude lies at the
sides in semicircles GKF and FLG. There the planet deviates to the north or
south, as was said [earlier in V1, 2], in accordance with the inclination of circle
FKG to the plane of the ecliptic. This deviation of the planet is called the
“obliquation” by some astronomers, and the “reflexion” by others. On the other
hand, when the earth is in B or D, that is, at the planet’s middle apsides, FKG
and GLF, which are called the “declinations,” will be the same latitudes, above
and below. Thus they differ from the former in name rather than in fact, and at
the middle places even the names are interchanged.

However, the angle of inclination of these circles is found to be greater in
the obliquation than in the declination. Accordingly, this disparity was con-
ceived to occur as a result of an oscillation, swinging around intersection FG as
its axis, as was said earlier [in VI, 2]. Hence, when we know this angle of inter-
section on both sides, from the difference between them we would readily infer
the amount of the oscillation from its minimum to its maximum.

Now conceive another circle of deviation, inclined to GKFL. Let it be con-
centric in the case of Venus; and in the case of Mercury, eccentreccentric, as
will be indicated later [in VI, 2]. Let their intersection RS serve as this oscilla-
tion’s axis, which moves in a circle according to the following rule. When the
earth is in A or B, the planet is at the extreme limit of its deviation, wherever it
may be, for instance, at point T. To the extent that the earth proceeds away
from A, the planet is understood to move an equivalent distance away from T.
Meanwhile, the obliquity of the circle of deviation diminishes. As a result, when
the earth has traversed quadrant AB, the planet is understood to have arrived at
this latitude’s node, that is, R. At that time, however, the planes coincide at the
oscillation’s midpoint, and proceed in opposite directions. Therefore, the re-
maining semicircle of deviation, which previously was southern, jumps north-
ward. As Venus advances into this semicircle, it leaves the south and proceeds
northward, never to turn south as a result of this oscillation. In like manner
Mercury pursues the opposite direction and remains southern. Mercury differs

also in swinging not on a concentric of the eccentric, but on an eccentreccentric.
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I 'used an epicyclet in demonstrating the nonuniformity of its motion in longi-

tude [V, 25]. There, however, its longitude is considered apart from its latitude;

here, its latitude is considered apart from its longitude. These are comprised in
one and the same revolution, and are equally completed thereby. Therefore, quite
evidently, both variations could be produced by a single motion and the same

oscillation, at once eccentric and oblique. There is no other arrangement than the

one which I just described and which I shall discuss further below [ V1, 5-8].

How much are the orbits of Saturn, Jupiter, and Mars inclined? Chapter 3.

Having explained the theory of the latitudes of the five planets, I must now
turn to the facts and analyze the details. First [I must determine] how much
the individual circles are inclined. We compute these inclinations by means of
the great circle which passes through the poles of the inclined circle at right
angles to the ecliptic. On this great circle the deviations in latitude are deter-
mined. When these arrangements are understood, the road will be open to
ascertaining the latitudes of each planet.

Once more let us begin with the three outer planets. At their farthest south-
ern limits of latitude, as shown in Ptolemy’s Table [Syntaxis, XIII, 5], when
they are in opposition, Saturn deviates 3°5’, Jupiter 2°~’, and Mars 7°7". On the
other hand, in the opposite places, that is, when they are in conjunction with
the sun, Saturn deviates 2° 2/, Jupiter 1° 5, and Mars only §’, so that it almost
grazes the ecliptic. These values could be inferred from the latitudes observed
by Ptolemy around the time of the planets’ disappearances and first visibilities.

Now that the above assertions have been set forth, let a plane perpendicular
to the ecliptic pass through its center and intersect the ecliptic in AB. But let its
intersection with the eccentric of any of the three outer planets be CD, passing
through the farthest southern and northern limits. Let the ecliptic’s center be
E; the diameter of the earth’s grand circle, FEG; the southern latitude, D; and
the northern, C. Join CF, CG, DE and DG.

For each planet the ratio of EG, [the radius] of the earth’s grand circle, to
ED, [the radius] of the planet’s eccentric, has already been shown above for any
given places of earth and planet. But the places of the maximum latitudes are
also given by observation. Therefore BGD, the angle of the greatest southern
latitude, is given as an exterior angle of triangle EGD. In accordance with the
theorems on Plane Triangles, the opposite interior angle GED will also be

given as the angle of the eccentric’s maximum southern inclination to the plane
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of the ecliptic. By means of the minimum southern latitude we shall likewise

demonstrate the minimum inclination, for example, by means of angle

EFD. In triangle EFD, the ratio of sides EF:ED is given as well as angle EFD.

Therefore we shall have exterior angle GED given as the angle of the mini-

mum southern inclination. Accordingly, from the =
difference between both inclinations we shall
obtain the whole oscillation of the eccentric in
relation to the ecliptic. Furthermore, by means
of these angles of inclination we shall compute
the opposite northern latitudes, such as AFC and
EGC. If these agree with the observations, they
will indicate that we have made no error.
However, as an example I shall use Mars, ;
because it exceeds all the other planets in lati- A
tude. Its maximum southern latitude was noted
by Ptolemy as about 7° when Mars was at peri-
gee, and its maximum northern latitude at apo-
gee as 4° 20" [Syntaxis, X111, 5]. However, having A2k
determined angle BGD = 6°50", I found the cor- \ "!
responding angle AFC 04°30". Given EG:ED [\
= 1P:1P 22" 26" [V, 19], from these sides and angle
BGD we shall obtain angle DEG of the maxi-
mum southern inclination [J1° 51". Since EF:CE
=117 39" 57 [V, 19] and angle CEF = DEG =1°

51’, consequently the aforementioned exterior angle CFA = 4%°when the planet

1s in opposition.

Similarly, at the opposite place when it is in conjunction with the sun, sup-
pose that we assume angle DFE = 5". From the given sides DE and EF together
with angle EFD, we shall obtain angle EDEF, and exterior angle DEG of the
minimum inclination [ g’". This will furnish us also with angle CGE of the
northern latitude [J6’. Hence, if we subtract the minimum inclination from the
maximum, that is, 1° 51" — 9’, the remainder [1° 41". This is the oscillation of this
inclination, and %2 [of the oscillation] [50%2".

In like manner the angles of inclination of the other two planets, Jupiter
and Saturn, were determined together with their latitudes. Thus, Jupiter’s maxi-

mum inclination = 1° 42”; its minimum inclination = 1° 18
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hence, its entire oscillation comprises not more than 24". On the other hand,
Saturn’s maximum inclination = 2° 44; its minimum inclination = 2° 16’; the
intervening oscillation = 28". Hence, through the smallest angles of inclination,
which occur in the opposite place, when the planets are in conjunction with the
sun, their deviations in latitude from the ecliptic will emerge as 2° 3" for Saturn
and 1° 6" for Jupiter. These values had to be determined and retained for the
construction of the Tables below [after VI, §].

General explanation of any other latitudes of these three planets. Chapter 4.
From what has been expounded above, the particular latitudes of these three
planets will likewise be clear in general. As before, conceive the intersection
AB of the plane perpendicular to the ecliptic and passing through the limits of
their farthest deviations, with the northern limit at A. Also let straight line CD
be the intersection of the planet’s orbit [with the ecliptic], and let CD intersect
AB in point D. With D as center, describe EF as the earth’s grand circle. From
E, where the earth is aligned with the planet in opposition, take any known arc
EF. From F and from C, the place of the planet, drop CA and FG perpendicu-
lar to AB. Join FA and FC.

In this situation we first seek the size of ADC, the angle of the eccentric’s
inclination. It has been shown [ VI, 3] to be at its maximum when the earth is in
point E. Its entire oscillation, moreover, as is required by the oscillation’s na-
ture, was revealed to be commensurate with the earth’s revolution on circle EF,
as determined by diameter BE. Therefore, because arc EF is given, ratio ED:EG
will be given, and this is the ratio of the entire oscillation to that which was just
detached from angle ADC. Hence in the present situation angle ADC is given.

Consequently, in triangle ADC, the angles being given, all its sides are
given. But ratio CD:ED is given by the foregoing. Also given, therefore, is [the
ratio of CD] to DG, the remainder [when EG is subtracted from ED]. Conse-
quently the ratios of both CD and AD to GD are known. Accordingly, AG,
the remainder [when GD is subtracted from AD], is also given. From this
information FG is likewise given, since it is half of the chord subtending twice
EF. Therefore, in right triangle AGF, two sides [AG and FG] being given,
hypotenuse AF is given, and so is ratio AF:AC. Thus, finally, in right triangle
ACEF, two sides [AF and AC] being given,

angle AFC will be given, and this is the angle of the apparent latitude, which

was sought.
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Again I shall exemplify this analysis with
Mars. Let its maximum limit of southern lati-
tude, which occurs near its lower apse, be in the
vicinity of A. However, let the place of the planet
be C, where ADC, the angle of the inclination,
was shown [ VI, 3] to be at its maximum, namely,
1° 50, when the earth was at point E. Now let us

put the earth at point F, and the motion in paral-

lax along arc EF = 45°. Therefore, straight line FG
is given = 7,071° whereof ED = 10,000°, and GE,
the remainder from the radius = 2,929P. But half D
of ADC, the angle of the oscillation, has been
shown = 0°50%" [ VI, 3]. In this situation its ratio
of increase and decrease = DE:GE [0 50%"15".

When we subtract this latter quantity from 1°50’,

the remainder = 1° 35" = ADC, the angle of the inclination in the present situa-
tion. Therefore, the angles and sides of triangle ADC will be given. CD was
shown above to be = 9,040P whereof ED = 6,580° [V, 19]. Hence, in those same
units FG = 4,653%; AD = 9,036?; AEG, the remainder = 4,383P, and AC = 249%2".
Therefore, in right triangle AFG, perpendicular AG = 4,383, and base FG =
4,653%; hence, hypotenuse AF = 6,392P. Thus, finally, triangle ACF has CAF as a
right angle, together with given sides AC and AF. Hence, angle AFC is given =
2°15" = the apparent latitude when the earth is situated at F. We shall pursue the
analysis in the same way for the other two planets, Saturn and Jupiter.

The latitudes of Venus and Mercury. Chapter s.
Venus and Mercury remain. Their deviations in latitude, as I said [ VI, 1], will

be demonstrated jointly by three interrelated latitudinal excursions.

In order to be able to separate these from one another, I shall begin with the one
called the “declination,” since it is simpler to treat. It is the only one which some-
times happens to be separated from the others. This [separation occurs] near the
middle longitudes and near the nodes when, as reckoned by the corrected mo-
tions in longitude, the earth is located a quadrant’s distance from the planet’s
apogee and perigee. When the earth is near the planet, [the ancients] found 6°22’
of southern or northern latitude in Venus, and 4° 5" in Mercury; but with the

earth at its greatest distance [from the planet], 1°2" in Venus, and 1° 45" in Mer-
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cury [Ptolemy, Syntaxis, X1III, 5]. Under these
circumstances the planets’ angles of inclination
are made known through the established tables
of corrections [after VI, 8]. Therein, when Ve-
nus is at its greatest distance from the earth with
its latitude = 1°2’, and at its least distance [with
its latitude = ] 6° 22’, an arc of approximately
2¥5°of orbital [inclination] fits both cases. When
Mercury is most remote [from the earth with

its latitude =] 1° 45°, and when it is closest [its

latitude = ] 4° 5 requires an arc of 6%° [as the

inclination] of its orbit. Hence, the orbits’ an-

gles of inclination = 2° 30" for Venus, but for

Mercury 6%°, with 360° = 4 right angles. Under

these circumstances each of their particular latitudes in declination can be ex-
plained, as I shall presently demonstrate, and first for Venus.

Let the ecliptic be the plane of reference. Let a plane perpendicular to it
and passing through its center intersect it in ABC. Let [the ecliptic’s] intersec-
tion with Venus’ orbital plane be DBE. Let the earth’s center be A; the center
of the planet’s orbit, B; and the angle of the orbit’s inclination to the ecliptic,
ABE. With B as center, describe orbit DFEG. Draw diameter FBG perpen-
dicular to DE. Let the orbit’s plane be conceived to be so related to the as-
sumed perpendicular plane that lines drawn therein perpendicular to DE are
parallel to one another and to the plane of the ecliptic, in which FBG is the
only [such perpendicular].

From the given straight lines AB and BC, together with ABE, the given
angle of inclination, it is proposed to find how much the planet deviates in

latitude. Thus, for example,

let the planet be at a distance of 45° away from E, the point nearest to the earth.
Following Ptolemy [ Synzaxis, X111, 4], I have chosen this point in order that it
may be clear whether the inclination of the orbit produces any variation in the
longitude of Venus or Mercury. For, such variations would have to be seen at
their maximum about halfway between the cardinal points D, F, E, and G. The
principal reason therefor is that when the planet is located at these four cardi-
nal points, it experiences the same longitudes as it would have without any

declination, as is self-evident.
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Therefore, let us take arc EH = 45°, as was said. Drop HK perpendicular to
BE. Draw KL and HM perpendicular to the ecliptic as the plane of reference.
Join HB, LM, AM, and AH. We shall have LKHM as a parallelogram with 4
right angles, since HK is parallel to the plane of the ecliptic. The side [LM of the
parallelogram] is enclosed by LAV, the angle of the longitudinal prosthaphaeresis.
But angle HAM embraces the deviation in latitude, since HM also falls perpen-
dicularly on the same plane of the ecliptic. Angle HBE is given = 45°. Therefore,
HK = half the chord subtending twice HE = 7,071° whereof EB = 10,000".

Similarly, in triangle BKL, angle KBL is given = 2%°[ V1, 5, above], BLK is
a right angle, and hypotenuse BK = 7,071° whereof BE = 10,000". In the same
units, the remaining sides KL = 308" and BL = 7,064". But, as was shown above
[V, 21], AB:BE O10,000":7,193". In the same units, therefore, the remaining
sides HK = 5,086P; HM = KL = 2217; and BL = 5,081P. Hence LA, the remainder
= 4,919". Now once more, in triangle ALM, sides AL and LM = HK are given,
and ALM is a right angle. Hence we shall have hypotenuse AM = 7,075P, and
angle MAL = 45° 57 = Venus’ prosthaphaeresis or great parallax, as computed.

Similarly, in triangle [MAH], side AM is given = 7,075, and side MH =
KL. Hence, angle MAH is obtained = 1° 47" = the latitudinal declination. But if
it is not boring to consider what variation in longitude is produced by this
declination of Venus, let us take triangle ALH, understanding LH to be a
diagonal of parallelogram LKHM = 5,091° whereof AL = 4,919">. ALH is a
right angle. From this information hypotenuse AH is obtained = 7,079?. Hence,
the ratio of the sides being given, angle HAL = 45°59". But MAL was shown =
45° 57" Therefore, the excess is only 2". Q.E.D.

Again, in like manner I shall demonstrate the latitudes of declination in
Mercury by a construction similar to the foregoing. Therein assume arc EH =
45°% so that each of the straight lines HK and KB is taken, as before, = 7,071
whereof hypotenuse HB = 10,000P. In this situation, as can be inferred from
the differences in longitude as shown above [V, 27], radius BH = 3,953? and AB
= 9,964". In such units BK and KH will both be = 2,795*. ABE, the angle of
inclination, was shown [ V1, 5, above] = 6°15’, with 360° = 4 right angles. Hence,
in right triangle BKL the angles are given. Accordingly, in the same units base
KL = 304F, and the perpendicular BL = 2,778°. Therefore, AL, the remainder =
7,186P. But LM = HK = 2,795P. Hence, in triangle ALM, L is a right angle, and
two sides, AL and LM, are given. Consequently, we shall have hypotenuse AM
= 7,710, and angle LAM = 21°16" = the computed prosthaphaeresis.
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Similarly, in triangle AMH, two sides are given: AM, and MH = KL, form-
ing right angle M. Hence, angle MAH is obtained = 2° 16" = the latitude we
were seeking. It may be asked how much [of the latitude] is owing to the true
and apparent prosthaphaeresis. Take LH, the diagonal of the parallelogram.
From the sides we obtain it = 2,811”, and AL = 7,186P. These show angle LAH =
21°23’ = the apparent prosthaphaeresis. This exceeds the previous calculation by

about 7' Q.E.D.

Venus’ and Mercury’s second latitudinal digression, depending on the
inclination of their orbits at apogee and perigee. Chapter 6.
The foregoing remarks concerned that latitudinal digression of these planets
which occurs near the middle longitudes of their orbits. These latitudes, as I
said [ VI, 1], are called the “declinations.” Now I must discuss the latitudes which
happen near the perigees and apogees. With these latitudes is mingled the
deviation or third [latitudinal] digression. Such a deviation does not occur in
the three outer planets, but [in Venus and Mercury] it can more easily be dis-
tinguished and separated out in thought, as follows.

Ptolemy observed [ Syntaxis, X111, 4] that these [perigeal and apogeal] lati-
tudes appeared at their maximum when the planets were on the straight lines

drawn from the center of the earth tangent to their orbits. This happens,

as I said [V, 21, 27], when the planets are at
their greatest distances from the sun in the
morning and evening. Ptolemy also found
[Syntaxis, X111, 3] that Venus’ northern lati-
tudes were ¥5° greater than the southern, but
Mercury’s southern latitudes were about 1%5°
greater than the northern. However, out of a
desire to take into account the difficulty and
labor of the computations, he accepted 2%2° as
a sort of average quantity for the varying val-
ues of the latitude, mainly because he believed
that no perceptible error would thereby arise,
as I too shall soon show [ V1, 7]. These degrees
are subtended by the latitudes on the circle

around the earth and at right angles to the

ecliptic, the circle on which the latitudes are
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measured. If we now take 2%2° as the equal digression to either side of the
ecliptic and for the time being exclude the deviation, our demonstrations will
be simpler and easier until we have ascertained the latitudes of the obliquations.

Then we must first show that this latitude’s digression reaches its maxi-
mum near the eccentric’s point of tangency, where the longitudinal
prosthaphaereses are also at their peak. Let the planes of the ecliptic and the
eccentric, whether Venus’ or Mercury’s, intersect [in a line] through the [plan-
et’s] apogee and perigee. On the intersection take A as the place of the earth,
and B as the center of the eccentric circle CDEFG, which is inclined to the
ecliptic. Hence, [in the eccentric] any straight lines drawn perpendicular to
CG form angles equal to the inclination [of the eccentric to the ecliptic]. Draw
AE tangent to the eccentric, and AFD as any secant. From points D, E, and F,
turthermore, drop DH, EK, and FL perpendicular to CG; and also DM, EN,
and FO perpendicular to the horizontal plane of the ecliptic. Join MH, NK,
and OL, as well as AN and AOM. For, AOM is a straight line, since three of its
points are in two planes, namely the plane of the ecliptic, and the plane ADM
perpendicular to the plane of the ecliptic. For the assumed inclination, then,
angles HAM and KAN enclose the longitudinal prosthaphaereses of these plan-

ets, whereas their digressions in latitude

are embraced by angles DAM and EAN.

I say, first, that the greatest of all the latitudinal angles is EAN, which is
formed at the point of tangency, where the longitudinal prosthaphaeresis also
is nearly at its maximum. For, angle EAK is the greatest of all [the longitudinal
angles]. Therefore KE:EA > HD:DA and LF:FA. But EK:EN = HD:DM =
LF:FO, since the angles subtended [by the second members of these ratios] are
equal, as I said. Moreover, M, N, and O are right angles. Consequently, NE:EA >
MD:DA and OF:FA. Once more, DMA, ENA, and FOA are right angles.
Therefore, angle EAN is greater than DAM and all the [other] angles which
are formed in this way.

Of the difference in longitudinal prosthaphaeresis caused by this obliquation,
consequently, clearly the maximum is also that which occurs at the greatest
elongation near point E. For on account of the equality of the angles subtended
[in the similar triangles], HD:HM = KE: KN = LF: LO. The same ratio holds
good for their differences. Consequently, the difference EK — KN has a greater
ratio to EA than the remaining differences have to sides like AD. Hence it is
also clear that the ratio of the greatest longitudinal prosthaphaeresis to the
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maximum latitudinal digression will be the same as the ratio of the longitudi-

nal prosthaphaereses of segments of the eccentric to the latitudinal digressions.
For, the ratio of KE to EN is equal to the ratio of all the sides like LF and HD
to the sides like FO and DM. q.E.D.

The size of the obliquation angles of both planets, Venus and

Mercury. Chapter 7.

Having made the foregoing preliminary remarks, let us see how great an angle
is contained in the inclination of the planes of both these planets. Let us recall
what was said above [ VI, 5], that each of the planets, when [midway] between
its greatest and least distances [from the sun], becomes farther north or south
at the most by 5° opposite directions depending on its position in its orbit. For,
at the eccentric’s apogee and perigee Venus’ digression makes a deviation im-

perceptibly greater or smaller than 5°, from which Mercury departs by %°,

more or less.

As before, let ABC be the intersection of the ecliptic and the eccentric. Around
B as center, describe the planet’s orbit inclined to the plane of the ecliptic in the
manner explained [previously]. From the center of the earth draw straight line
AD tangent to the orbit at point D. From D drop perpendiculars, DF on CBE,
and DG on the horizontal plane of the ecliptic. Join BD, FG, and AG. Also
assume that in the case of both planets angle DAG, comprising half of the afore-
mentioned difference in latitude, = 2%°, with 4 right angles = 360°.

Let it be proposed to find, for both planets, the size of the angle of inclina-
tion of the planes, that is, angle DFG.

In the case of the planet Venus, in units whereof the orbit’s radius = 7,193?, the
planet’s greatest distance [from the earth], which occurs at the apogee, has been
shown = 10,208, and its least distance, at perigee, = 9,792P [V, 21-22]. The mean
between these values = 10,000P, which I have adopted for the purposes of this
demonstration. Ptolemy wanted to take laboriousness into account and, as far as
possible, seek out short cuts [ Synzaxis, X111, 3, end]. For where the extreme values
did not produce a manifest difference, it was better to accept the mean value.

Accordingly, AB:BD = 10,000":7,193F, and ADB is a right angle. Then we
shall have side AD = 6,9477 in length. Similarly, BA:AD = BD:DF, and we
shall have DF = 4,997° in length. Again, angle DAG is assumed = 2%:° and
AGD is a right angle. In triangle [ADG, then], the angles being given, side
DG = 303° whereof AD = 6,947°. Thus also [in triangle DFG] with two sides,
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DF and DG, being given, and DGF a right angle, DFG, the angle of inclina-
tion or obliquation = 3°29". The excess of angle DAF over FAG comprises the
difference in longitudinal parallax. Then the difference must be derived from
the known sizes [of those angles].

It has already been shown that in units whereof DG = 303P, hypotenuse AD
= 6,947°, and DF = 4,997, and also that (AD)? — (DG)? - (AG)?, and (FD)? -
(DG)? = (GF)% Then as a length AG is given = 6,940, and FG = 4,988". In
units whereof AG = 10,000°, FG = 7,187", and angle FAG = 45° 57". In units
whereof AD = 10,000?, DF = 7,193, and angle DAF [046°.

In the greatest obliquation, therefore, the parallactic prosthaphaeresis is dimin-
ished by about 3". At the middle apse, however, clearly the angle of the inclination
between the circles was 2%°. Here, however, it has increased by nearly a whole
degree, which was added by that first libratory motion which I mentioned.

For Mercury the demonstration proceeds in the same way. In units whereof
the orbit’s radius = 3,573F, the orbit’s greatest distance from the earth = 10,948;
its least distance = 9,052F; and between these values the mean = 10,000" [V, 27].
AB:BD = 10,000":3,573". Then [in triangle ABD] we shall have the third side
AD = 9,340°. AB:AD = BD:DF. Therefore DF = 3,337” in length. DAG = the
angle of the latitude, is assumed = 2%°. Hence DG = 407° whereof DF = 3,337
Thus in triangle DFG, with the ratio of these two sides being given, and with
G a right angle, we shall have angle DFG [O7° This is the angle at which
Mercury’s orbit is inclined or oblique to the plane of the ecliptic. Near the

middle longitudes at a quadrant’s [distance
from apogee and perigee], however, the angle
of inclination was shown = 6°15" [ V1, 5]. There-
fore, 45" have now been added by the motion
of the first libration.

Similarly, for the purpose of ascertaining
the angles of prosthaphaeresis and their dif-
ference, it may be noticed that straight line
DG has been shown = 407" whereof AD =
9,340” and DF = 3,3377. (AD)* - (DG)* =
(AG)?, and (DF)? = (DG)? = (FG)2. Then we
shall have as a length AG = 9,331%, and FG =
3,314P. From this information is obtained GAF

= the angle of the prosthaphaeresis = 20°

367 Nicolaus Copernicus. De Revolutionibus Orbium Ceelestium, Libri VI. Nuremberg, 1543. THE WARNOCK LIBRARY

page 190v




48'whereas DAF = 20°56’, than which GAF, which depends on the obliquation,
is about 8" smaller.

It still remains for us to see whether these angles of obliquation and the
latitudes connected with the orbit’s maximum and minimum distance [from
the earth] are found to conform with those obtained by observation. For this
purpose in the same diagram again assume, in the first place, for the greatest
distance of Venus’ orbit [from the earth] that AB:BD = 10,208P:7,193". Since
ADB is a right angle, as a length AD = 7,238 in the same units. AB:AD =
BD:DEF. Then in those units DF = 5,102 in length. But DFG = the angle of the
obliquity, was found = 3° 29" [earlier in VI, 7]. The remaining side DG = 309?
whereof AD = 7,2380. Then, in units whereof AD = 10,000°,

DG = 427°. Hence, angle DAG is inferred = 2° 27" at the [planet’s] greatest
distance from the earth. However, in units whereof BD = the orbit’s radius =
7,1937, AB = 9,792P at the [planet’s] least [distance from the earth]. AD, per-
pendicular to BD, = 6,644°. AB:AD = BD:DF. Similarly, as a length DF is
given = 4,883P in those units. But angle DFG has been put = 3°29". Therefore,
DG is given = 297° whereof AD = 6,644P. Consequently in triangle [ADG], the
sides being given, angle DAG is given = 2° 34". However, neither 3" nor 4’ are
large enough to be registered instrumentally with the aid of astrolabes. Hence,
what was regarded as the maximum latitudinal digression in the planet Venus
stands up well.

In like manner assume that the greatest distance of Mercury’s orbit [from
the earth is to the radius of Mercury’s orbit], that is, AB:BD =10,948:3,573" [ V,
27]. Thus, by demonstrations like the foregoing, we obtain AD = 9,452, and
DF = 3,085P. But here again we have DFG, the angle of the inclination [be-
tween Mercury’s orbit and the plane of the ecliptic] known = 7°, and for that
reason straight line DG = 376 whereof DF = 3,085° or DA = 9,452P. Hence in
right triangle DAG, whose sides are given, we shall have angle DAG [2°1;7" =
the greatest digression in latitude.

At the [orbit’s] least distance [from the earth], however, AB:BD is put =
9,052":3,573F. Hence, in those units AD = 8,317%, and DF = 3,283". However, on
account of the same inclination, DF:DG is put = 3,283P:400" whereof AD =
8,317°. Hence, angle DAG = 2°45".

The latitudinal digression associated with the mean value [of the distance
of Mercury’s orbit from the earth] is here too assumed = 2%°. From this quan-

tity the latitudinal digression at apogee, where it reaches its minimum, differs
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by 13". At perigee, however, where the latitudinal digression attains its maxi-
mum, it differs [from the mean value] by 15". Instead of these [apogeal and
perigeal differences], in computations based on the mean value, above it and
below it I shall use %°, which does not differ perceptibly from the observations.

As a result of the foregoing demonstrations, and also because the greatest
longitudinal prosthaphaereses have the same ratio to the greatest latitudinal
digression as the partial prosthaphaereses in the remaining portions of the or-
bit have to the several latitudinal digressions, we shall obtain all the latitudinal
quantities occurring on account of the inclination of the orbits of Venus and
Mercury. But only the latitudes midway between apogee and perigee, as I said
[VI, 5], are available. It has been shown that of these latitudes the maximum =

2¥%° [ V1, 6],

while Venus’ greatest prosthaphaeresis = 46°, and Mercury’s 022° [ V], 5]. And
now in the tables of their nonuniform motions [after V, 33] we have the
prosthaphaereses alongside the individual portions of the orbits. To the extent
that each of the prosthaphaereses is smaller than the maximum, I shall take the
corresponding part of those 2%° for each planet. I shall record that part nu-
merically in the Table which is to be set out below [after VI, 8]. In this way we
shall have in detail every individual latitude of obliquation which occurs when
the earth is at the higher and lower apsides of these planets. In like manner I
have recorded the latitudes of their declinations [when the earth is] at a quad-
rant’s distance [midway between the planets’ apogee and perigee], and [the
planets are] at their middle longitudes. What occurs between these four critical
points [higher, lower, and both middle apsides] can be derived by the subtlety
of the mathematical art from the proposed system of circles, not without labor,
however. Yet Ptolemy was everywhere as compact as possible. He recognized
[Syntaxis, X111, 4, end] that by themselves both of these kinds of latitude
[declination, obliquation] as a whole and in all their parts increased and de-
creased proportionally like the moon’s latitude. He therefore multiplied each of
their parts by twelve, since their maximum latitude = 5° = Y12 X 60°. He made
these [products] into proportional minutes, which he thought should be used
not only in these two planets but also in the three outer planets, as will be

explained below [VI, 9].
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The third kind of latitude, which is called the “deviation,” in Venus and
Mercury. Chapter 8.

Now that the foregoing topics in their turn have been thus expounded, some-
thing still remains to be said about the third motion in latitude, which is the
deviation. The ancients, who station the earth in the middle of the universe,
think that the deviation is produced by an oscillation of the eccentric, in phase
with that of the epicycle, around the earth’s center, the maximum occurring
when the epicycle is located at the [eccentric’s] apogee or perigee [Ptolemy,
Syntaxis, X111, 1]. In Venus the deviation is always %° to the north, but in Mer-
cury always %° to the south, as I said above.

Yet it is not quite clear whether the ancients regarded this inclination of the
circles as constant and always the same. For, this immutability is indicated by
their numerical quantities when they ordain that % of the proportional min-
utes always be taken as Venus’ deviation, and % as Mercury’s [Ptolemy, Syz-

taxis, X111, 6]. These fractions do not hold good unless

the angle of inclination always remains the same, as is required by the scheme
of those minutes which are based on that angle. Moreover, even if the angle
does remain the same, it will be impossible to understand how this latitude of
those planets suddenly rebounds from the intersection into the same latitude as
that from which it previously came. You may say that this rebound happens like
the reflection of light (as in optics). Here, however, we are discussing a motion

which is not instantaneous, but by its very na-

ture takes a determinable time.
It must be admitted, consequently, that these '

planets have a libration such as I have explained i

—

[VI, 2]. It makes the parts of the circle change
[from one latitude] into the opposite. It is also a \
necessary consequence for their numerical quan-
tities to vary, by ¥68in the case of Mercury. Hence
there should be no occasion for surprise if, ac- : s
cording to my hypothesis, also this latitude var- |'|| |

ies and is not absolutely constant. Yet it does not ‘

produce a perceptible irregularity, distinguish- w
able as such in all its variations. Let the hori- !g-
zontal plane be perpendicular to the ecliptic. In A

the intersection [AEBC of these two planes] let
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A = the center of the earth; and at the greatest or least distance from the earth
let B = the center of a circle CDF, which virtually passes through the poles of
the oblique orbit. When the center of the orbit is at apogee and perigee, that is,
on AB, the planet is at its greatest deviation, wherever it may be as determined
by a circle parallel to the orbit. Of this circle parallel [to the orbit], the diameter
DF is parallel to CBE, the diameter of the orbit. Of these [parallel circles],
which are perpendicular to the plane of CDE, these diameters are taken to be
the intersections [with CDF]. Bisect DF at G, which will be the center of the
[circle] parallel [to the orbit]. Join BG, AG, AD, and AF. Put angle BAG = %",
as at Venus’ greatest deviation. Then in triangle ABG, with a right angle at B,
we have the ratio of the sides AB:BG =10,000P:29P. But in those same units the
whole of ABC = 17,193* and AE = the remainder = 2,807". Half of the chords
subtending twice CD and EF = BG. Therefore, angle CAD = 6', and EAF [
15". They differ from BAG, in the former instance by only 4, and in the latter
instance by 5, quantities which are generally ignored on account of their small
size. Then Venus’ apparent deviation, when the earth is located at its apogee

and perigee, will be slightly greater or smaller than 10,

in whatever part of its orbit the planet may be.

In the case of Mercury, however, we put angle BAG = %°. AB:BG =10,000?
:131°, ABC = 13,573, and the remainder AE = 6,427°. Then angle CAD =33, and
EAF O7o'. In the former instance, therefore,

12" are lacking, and in the latter instance there is
an excess of 25". Yet these differences are practi- / |

cally obliterated by the sun’s rays before Mer-

cury becomes visible to us. Hence the ancients l C_L__‘ "

investigated only its perceptible deviation, as

though this were invariant. \\ e /__ c /
Nevertheless, if anybody is not wearied by AN __i_|‘ =]

the labor and wishes to obtain an exact knowl- S =
edge also of those divagations which are hid-
den by the sun, I shall explain how to do so in X |
the following way. )

As the example I shall use Mercury, because
its deviation is more notable than Venus’. Let

the straight line AB be in the intersection of

o

the planet’s orbit and the ecliptic. Let the earth
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at A be at the apogee or perigee of the planet’s orbit. Put line AB = 10,000?
without any variation as the length midway between the maximum and mini-
mum, as I did with regard to the obliquation [VI, 7].

With C as center, describe circle DEF, parallel to the eccentric orbit at
distance CB. Conceive the planet as undergoing its maximum deviation at that
time on this parallel circle. Let this circle’s diameter be DCF, which must like-
wise be parallel to AB, while both lines are in the same plane, perpendicular to
the planet’s orbit. Assume EF = 45° for example, the arc at which we investi-
gate the planet’s deviation. Drop EG perpendicular to CF, as well as EK and
GH perpendicular to the horizontal plane of the orbit. By joining HK, com-
plete the rectangle. Also join AE, AK, and EC.

On the basis of the maximum deviation in Mercury, BC = 131° whereof
AB = 10,000 and CE = 3,573F. In right triangle [CEG], the angles being
given, side EG = KH = 2,526°. When BH = EG = CG is subtracted, the
remainder AH = 7,474P. In triangle AHK, therefore, the sides forming right
angle H being given, hypotenuse AK = 7,88¢9?. But [KE] = CB = GH has been

taken 131°. Hence in triangle

AKE two given sides, AK and KE, form right angle K, and angle KAE is
given. This corresponds to the deviation which we were seeking for the as-
sumed arc EF, and it differs little from the observations. Proceeding similarly
in the other [deviations of Mercury] and in Venus, I shall enter the results in
the subjoined Table.

Having made the foregoing explanation, for the deviations between these
limits I shall adjust the sixtieths or proportional minutes in both Venus and
Mercury. Let circle ABC be the eccentric orbit of Venus or Mercury. Let A
and C be the nodes of this lati-

tude. Let B be the limit of the -‘-ﬂL\

maximum deviation. With B as .-_.fJfL \!

center, describe a circlet DFG, I{,{f’l;:—ri':‘}fﬁ\,\
whose transverse diameter is e il R‘-\_
DBF. Let the libration of the NN
motion in deviation occur \'-\"‘._

along DBEF. It is assumed that
when the earth is in the apo- f\
gee or perigee of the planet’s

eccentric orbit, the planet ex-
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ecutes its greatest deviation at point F, where the planet’s deferent is tangent
to the circlet.

Now let the earth be at any distance whatever from the apogee or perigee of
the planet’s eccentric. In accordance with this motion take FG as a similar arc
on the circlet. Describe AGC as the planet’s deferent. AGC will intersect the
circlet and [cut its] diameter DF in point E. On AGC put the planet at K, with
arc EK similar to FG by hypothesis. Drop KL perpendicular to circle ABC.

From FG, EK, and BE it is proposed to find magnitude KL = the planet’s
distance from circle ABC. From arc FG, EG is known as though it were a
straight line barely different from a circular or convex line. Likewise, EF will be
given in the same units as the whole of BF and BE, the remainder [when EF is
subtracted from BF]. BF:BE = chord subtending twice the quadrant CE: chord
subtending twice CK = BE:KL. Therefore, if we compare both BF and the
radius of CE to the same number 60, from them we shall obtain the value of
BE. When this is squared, and the product is divided by 60, we shall obtain KL
= the desired proportional minutes of arc EK. In like manner I have entered

these minutes in the fifth and last column of the Table which follows.
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Latitudes of Saturn, Jupiter, and Mars page 193v
Saturn’s Latitude Jupiter’s Latitude Mars’ Latitude Propor-
Common tional
Numbers | Northern | Southern | Northern | Southern | Northern | Southern | Minutes
o o o . o - o - o - o . o . Min Sec
303723 2|21 |6 1|5 ]0|6]|0/|5/]5]4
6 354 | 2 4 2 2 I 7 I 5 o 7 o 5 |59 | 36
9 (31| 2| 4|2 |3 |1 |7 |15 ]0o]|9]|o]|6/|5]6%6
12 | 348 | 2 5 2 3 I 3 I 6 o 9 o 6 | 58 | 36
15 | 345 | 2 5 2 3 I 8 I 6 o |10 | O 8 | 57 | 48
18 | 342 | 2 6 2 3 I 3 I 6 o I o 8 | 57| o
21 339 | 2 6 2 4 I 9 I 7 o | 12| o 9 | 55 | 48
24 (336 | 2 | 7 | 2| 4|1 |9 |1 |7 |o|1B|oOo |9 |54]36
27 (333 | 2 8 2 5 I 10 I 8 o 14 o 10 | 53 | 18
30 [330 | 2 8 2 5 I 10 I 8 o 14 o I | 52 o
33 | 327 | 2 9 2 6 I I I 9 o |15 | o | m |50 ]| 12
36 | 324 | 2 | 10 | 2 7 I 11 I 9 o | 16 | o | 12 | 48 | 24
39 [321| 2 | 10 | 2 7 I 2 I |10 | 0o |17 | o | 12 | 46 | 24
42 | 318 | 2 I 2 8 I 12 I 10 o 18 o 13 | 44 | 24
45 | 315 | 2 I 2 9 I 13 I m | o |19 | o |15 | 42|12
48 |32 | 2 |12 | 2 |10 | I 13 I im| o |20| o |16 |40 | o
51 [309| 2 | 13 2 | 1 1| 14| 1 2 | o |22 | o | 18| 37| 36
54 |306| 2 |14 | 2 |12 | 1 |14 | I 3| o | 23] o |20 35| 12
57 [303] 2 | 15 2 | 3 I 15 I | 14| o | 25| o | 2232 |36
60 |300| 2 | 16 2 15 I 16 I 16 | o | 27| o |24 |30 | o
63 |297| 2 |17 | 2 |16 | 1 |17 | 1 |17 | 0 |29 | 0 | 25 |27 | 12
66 | 294 | 2 | 18 2 | 18 I 18 I 8 | o |3t | o 27|24 ] 24
69 |291| 2 |20 2 |19 | 1 |19 | 1 |19 | 0 |33 | 0 |29 ]| 21 | a1
72 | 288 | 2 2I 2 2I I 21 I 21 o | 35 o 31 | 18 | 18
75 | 285 2 |22 | 2 |22 | 1 |22 | 1 |22 | 0 |37]| 0 |34]|15 |15
78 | 282 | 2 24 2 24 1 24 I 24 o | 40 o 37 | 12 | 12
81 | 279 | 2 | 25 | 2 |26 | 1 25 I 25 | o | 42| o [ 39| 9 9
84 (276 | 2 |27 | 2 |27 | 1 |27 | 1 | 27| o |45 | o | 41 | 6 | 24
87 | 273 | 2 28 2 28 I 28 I 28 o | 48 o 45 3 12
9o |270| 2 |30 | 2 |30 | 1 |30 | 1 |29 | o |51 ]| o |49 | o o
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Latitudes of Saturn, Jupiter, and Mars
Saturn’s Latitude Jupiter’s Latitude Mars’ Latitude Propor-
Common tional
Numbers | Northern | Southern | Northern | Southern | Northern | Southern | Minutes
o o o . o o P o ) . ) Min Sec
93 [267] 2 | 31 | 2 | 31 1| 31 1 [ 31| o |55 | 0o |5s52]| 3 |12
96 | 264 | 2 |33 | 2 |33 | I [ 3 | I [33 |0 |5 |0 56|24
99 | 261 | 2 |34 | 2 |34 | I |34 | 1 |34 ]I 2 I o 9 9
102 | 2588 | 2 |36 | 2 | 36 1 | 36 1 | 36 I 6 I 4 | 12 | 12
105 | 255 | 2 37 2 37 I 37 I 37 I 11 I 8 15 15
108 | 252 | 2 39 2 39 I 39 I 39 I 15 I 12 | 18 | 18
mr (249 | 2 [ 40| 2 |40 | 1 | 40| 1 |40 | 1 |19 | 1 17 | 21 | 21
m3 | 246 | 2 |42 | 2 | 42 | 1 | 42| 1 | 42| 1 |25 | 1 | 22 | 24 | 24
Iy | 243 | 2 | 43 | 2 | 43 | T | 43 | I |43 | I | 3L 1|28 | 27 | 12
120240 | 2 | 45 | 2 | 45 | 1 | 45| 1 | 44| 1 [ 36| 1 |34 |30 | o
123 237 | 2 | 46 | 2 | 46 | 1 | 46 | 1 | 46 I 41 1 | 40 | 32 | 36
126 (234 | 2 | 47 | 2 | 48 | 1 | 47| 1 |47 | 1 | 47| 1 | 47| 35 | 12
129 | 231 | 2 [ 49 | 2 | 49 | I |49 | T [ 49 | T |54 | T |55 |37 |36
32 [228| 2 |50 | 2 | 51 I |50 | 1 | 51| 2 2 2 5 | 40 | o
35 | 225 2 |52 | 2 | 53 I 51 1 | 53] 2 |0f 2 |15 | 42| 12
138 (222 2 | 53| 2 |54 | 1 |52 | 1 |54 | 2 |19 | 2 |26 44| 24
I41 | 219 | 2 | 54 | 2 | 55 I |53 I |55 2 29| 2 |38 |46 24
144 (216 | 2 | 55 | 2 |56 | 1 |55 | 1 |57 | 2 |37 | 2 |48 |48 |24
47 [ 213 | 2 | 56 | 2 | 57 1 | 56 1 | 58 2 | 47 | 3 4 | 50 | 12
150 | 210 | 2 57 2 58 I 58 I 59 2 5I 3 20 | 52 o
153 | 207 | 2 58 2 59 I 59 2 I 3 12 3 32 | 53 | 18
156 (204 | 2 | 59 | 3 o 2 o 2 2 3 23 | 3 | 52 | 54 | 36
I59 | 201 | 2 | 59 | 3 I 2 I 2 3 3 |34 | 4 | 13|55 |48
162 | 198 | 3 o 3 2 2 2 2 4 3 | 4| 4 [36 |57 | o
165 | 195 | 3 o 3 2 2 2 2 5 315715 o | 57|48
68 1192 | 3 | 1 | 3 [ 3 [ 2 |3 |2 |5/|4/]9]5]23]58]36
r Mg | 3 | | 3|3 (2|3 |2]6/|4]|17|5|48]5]°6
174 |86 | 3 | 2 | 3 | 4 | 2| 4 | 2| 6| 4 23] 6 |15 |5 |36
7 |83 3 | 2 | 3 | 4| 2| 4|2 |7 | 427|635 |59 |48
180 | 180 | 3 2 3 5 2 4 2 7 4 30| 6 |50 |60 | o
375 Nicolaus Copernicus. De Revolutionibus Orbium Ceelestium, Libri VI. Nuremberg, 1543. THE WARNOCK LIBRARY

page 194r



Latitudes of Venus and Mercury page 194v

Venus Mercury Venus | Mercury | Proportional : |

Common Minutes of b 1'1.-"r'-""I

Numbers | Declination | Obliquation| Declination | Obliquation| Deviation | Deviation |the Deviation ;_-_ it j.___ & .,:iii'lf
o ) ) . ) - o - o - o . o . Min Sec
3 |37 1 2 0 4 I 45 | © 5 0 7 o |33 |5 |36
6 |354 | 1 2 o 8 I 45 | o I o 7 o |33 |59 | 12
9 | 351 | 1 I o | 12 I 45 | o | 16 | © 7 o | 33 | 58 | 25
2 | 348 | I I o | 16 I |44 | o | 22 | o 7 o |33 |57 | 14
I5 |345 | 1 o o | 21 I | 44| 0 |27 | © 7 O | 33 | 5 | 41
18 1342 | 1 o o | 25 I | 43| 0 |3 | o© 7 O |33 |54 |9
21 (339 O |59 | o |29 | 1 | 4| o 380 7 o | 33 |5 | 12
24 [336| o | 59 | o | 33 I | 40| O | 44 | © 7 O | 34 |49 | 43
27 [ 333 o | 58| o (37| 1 |38 |0 |49 | 0| 7 | O |34]47 |2
30 (330 0 [ 57| o0 |4 | 1 |3 | 0|55 ]| 0| 8 | o |34]45]| 4
33 (327 0 | 56| o |45 | 1 [34 |1 |0 | o | 8 | 0 |34]|4]oO0
36 |324| 0 | 55| 0 |49 | 1 |30| 1 |6 |0 8 o0 |3]3]715
39 | 321 © | 53| O |53 I 27| 1 1 o 8 o | 35 |3 |53
42 | 318 | © 5I o 57 I 23 I 16 o 8 o 35 | 32 | st
45 [ 315 | o | 49 | 1 I I 19 I 21 | © 8 o | 35 | 29 | 41
48 | 312 | o | 46 | 1 5 I 15 1 |26 | o 8 o | 36 | 26 | 40
5T 309 | O | 44 | 1 9 I 11 I |31 ] o 8 o |36 | 23 | 34
54 | 306 | o 41 I 13 I 8 I 35 o 8 o | 36 | 20 | 39
57 | 303 o | 38 I 17 I 4 I 40 | © 8 o 37 | 17 | 40
60 |300| o 35 I 20 | o | 59 I 44 | o 8 o 38 | 13 o
63 | 297 | o | 32 I 24 | o | 54 I 48 o 8 o 38 | 12 | 20
66 | 294 | o | 29 1 28 | o | 49 I 52 | o 9 o | 39 9 55
69 | 291 | o | 26 | 1 32 | o | 44| 1 |56 ]| o 9 o |39 | 7 | 38
72 | 288 | o 23 I 35 o | 38 2 o o 9 o | 40 5 39
75 | 285 | o | 20 I 38 o 32 2 3 o 9 o 41 3 57
78 | 282 | o | 16 | I | 42 | o | 26 | 2 7 o 9 o | 42| 2 | 34
8r | 279 | o 12 I 46 o 21 2 10 o 9 o | 42 I 28
84 | 276 | o 8 1 |50 | o | 16 2 |14 | o |10]| 0o | 43 | o | 40
87 | 273 | o 4 I 54 o 8 2 17 o 10 O | 44 | o 10
90 | 270 | © o I 57 | o o 2 20| o | 10| o | 45 | o o
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Latitudes of Venus and Mercury
Venus Mercury Venus | Mercury | Proportional
Common Minutes of
Numbers | Declination | Obliquation| Declination | Obliquation| Deviation | Deviation |the Deviation
o ) ) . ) - o - o - o . o . Min Sec
93 | 267 | o 5 2 o o 8 2 | 23| o | 10| 0 | 45 | o | 10
96 | 264 | o | 10 | 2 3 o 15 2 25 | o |10 | o | 46 | o | 40
99 | 261 | o | 15 2 6 o | 23 2 | 27| 0o | 10| 0o |47 |1 28
102 | 258 | o | 20 2 9 o 31 2 28 o I o | 48 2 | 34
105|255 o |26 | 2 |12 | o | 40| 2 |29 | o | 1m | o |48 | 3 | 57
108 [ 252 | O | 32 2 15 o | 48 2 |29 | o II o |49 | 5 | 39
I | 249 | o | 38 2 17 o 57 2 | 30| o I o | 50 7 38
113 | 246 | 0 | 44 | 2 | 20 | 1 6 2 | 30| o I o | s 9 | 55
7 243 o |50 | 2 |22 | 1 | 16| 2 |30| o | 1L | o |5 |12 |20
120 (240 0 | 59 | 2 | 24 | 1 25 | 2 | 29| o | 2| 0o |52 |15 |0
123 | 237 | 1 8 2 26 I 35 2 28 o 12 o 53 | 17 | 40
126 | 234 | I 18 2 |27 | 1 45 | 2 | 26 | o | 12 | o | 54 | 20 | 39
129 |23t | 1 [ 28 | 2 |29 | 1 |55 | 2 | 23| o | 12| o |5 |23]|34
132 | 228 | 1 | 38 2 [ 30| 2 6 2 20| o | 12| o | 56 | 26 | 40
135 | 225 1 | 48 | 2 [ 30 | 2 | 16 2 |16 | o | 13 o | 57 | 29 | 41
8|22 | 1 [ 59| 2 |30 2 |27] 2 m| o | 13| o |57 3]s
141 | 219 | 2 I 2 |29 | 2 | 37| 2 6 o | 13| o |58 |35 353
I44 | 216 | 2 | 25 | 2 | 28 | 2 | 47 | 2 o o | 13| o |5 |3 | 1
47 213 | 2 | 43 | 2 |26 ] 2 | 57| 1 |53 | o0 | 13 I o | 42| o
150 | 210 | 3 3 2 22 | 3 7 I | 46 | o 13 I 1 45 | 4
153 | 207 | 3 23 2 18 3 17 I 38 o 13 I 2 47 | arI
156 (204 | 3 | 44 | 2 12 | 3 | 26| 1 |29 0 |14 ]| 1 3 | 49 | 43
159 | 201 | 4 5 2 4 3 | 34| 1 |20 0 |14 ] 1 4 | 52 | 12
162 | 198 | 4 | 26 | 1 |55 | 3 | 42| 1 |10]| 0 |14 | I 5 |54 | 9
165 (195 | 4 |49 | T |42 | 3 | 48| o |59 | 0o |14 | 1 | 6|55 |4
168 | 192 | 5 | 13 I |27 | 3 | 54| o | 48| o |14 | 1 7 | 57 | 14
71 | 189 | 5 | 36 | I 9 3 | 58| o | 36| o | 14| 1 7 |58 | 25
174 | 186 | 5 52 o | 48 4 2 o 24 | © 14 I 8 59 | I2
177 | 183 | 6 7 o | 25 | 4 4 o |12 | o |14 | 1 9 | 59 | 36
180 | 180 | 6 22 | o o 4 5 o o o 14 1 0 | 60| o

Computing the latitudes of the five planets. Chapter 9.
The method of computing the latitudes of the five planets by means of the
toregoing Tables is as follows. In Saturn, Jupiter, and Mars we obtain the com-
mon numbers from the adjusted or normalized anomaly of the eccentric. In
Mars we keep the anomaly as it is; in Jupiter we first subtract 20°% but in Saturn
we add 50° Then we record the results in the last column under the sixtieths or
proportional minutes.

Similarly, from the adjusted parallactic anomaly we take each planet’s number

as its associated latitude. We take the first and northern latitude if the propor-
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tional minutes [descend from] higher [to lower]. This happens when the ec-
centric’s anomaly falls below 9o° or exceeds 270°. But we take the second and
southern latitude if the proportional minutes [rise from] lower [to higher], that
is, if the eccentric’s anomaly (with which we enter the Table) is more than go°
or less than 270°. If we then multiply either of these latitudes by its sixtieths, the
product will be the distance north or south of the ecliptic, depending on the
classification of the assumed numbers.

In Venus and Mercury, on the other hand, from the adjusted parallactic
anomaly we must first take the three latitudes which occur: declination,
obliquation, and deviation. These are recorded separately. By an exception, in
Mercury %o of the obliquation is subtracted if the eccentric’s anomaly and its
number are found in the upper part of the Table, or an equal fraction is added
if [the eccentric’s anomaly and its number are found] in the lower [part of the
Table]. The remainder or sum resulting from these operations is retained.

However, the classification of these latitudes as northern or southern must
be ascertained. Suppose that the adjusted parallactic anomaly lies in the apogeal
semicircle, that is, is less than 9o° or more than 270° and also that the eccen-
tric’s anomaly is less than a semicircle. Or again, suppose that the parallactic
anomaly lies in the perigeal arc, namely, is more than 9o® and less than 270°,
and the eccentric’s anomaly is larger than a semicircle. Then, Venus’ declina-
tion will be northern, and Mercury’s southern. On the other hand, suppose
that the parallactic anomaly lies in the perigeal arc while the eccentric’s anomaly
is less than a semicircle, or that the parallactic anomaly lies in the apogeal re-
gion, while the eccentric’s anomaly is greater than a semicircle. Then, con-
versely, Venus’ declination will be southern, and Mercury’s northern. In the

obliquation, however, if the parallactic anomaly is less than a semicircle

and the eccentric’s anomaly is apogeal, or if the parallactic anomaly is greater
than a semicircle and the eccentric’s anomaly is perigeal, Venus’ obliquation
will be northern and Mercury’s southern; here too the converse holds true.
However, the deviations always remain northern for Venus and southern for
Mercury.

Then, with the adjusted anomaly of the eccentric take the proportional
minutes common to all five planets. Those proportional minutes which are
ascribed to the three outer planets, even though they are so ascribed, are to be
assigned to the obliquation, and the remainder to the deviation. Thereafter add

90° to that same anomaly of the eccentric. The common proportional minutes
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which are connected with this sum are again to be applied to the latitude of
declination.

When all these quantities have been so arranged in order, multiply by its
own proportional minutes each of the three separate latitudes that have been
set down. They will all emerge corrected for time and place, so that finally we
have the complete account of the three latitudes in these two planets. If all the
latitudes are of the same classification, add them together. But if they are not,
combine only those two which are of the same classification. According as
these two amount to more or less than the third latitude of the opposite classi-
fication, it is subtracted from them, or they are subtracted from it, and the

preponderant remainder will be the latitude which we were seeking.

End of the sixth and last book of the Revolutions.
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